Ultrathin Magnetic Structures I


Book Description

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic Structures aims to fulfill this dual need. The original two volumes – now available once more – are An Introduction to the Electronic, Magnetic and Structural Properties (this volume) and "Measurement Techniques and Novel Magnetic Properties." Two new volumes, "Fundamentals of Nanomagnetism" and "Applications of Nanomagnetism," extend and complete this comprehensive work by presenting the foundations of spintronics.




Ultrathin Magnetic Structures II


Book Description

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic Structures aims to fulfill this dual need. The original two volumes – now available once more – are "An Introduction to the Electronic, Magnetic and Structural Properties" (Vol. I) and Measurement Techniques and Novel Magnetic Properties (this volume). Two new volumes, "Fundamentals of Nanomagnetism" and "Applications of Nanomagnetism," extend and complete this comprehensive work by presenting the foundations of spintronics.




Ultrathin Magnetic Structures IV


Book Description

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.




Ultrathin Magnetic Structures III


Book Description

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.




Ultrathin Magnetic Structures


Book Description




Ultrathin Magnetic Structures III


Book Description

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.




Ultrathin Magnetic Structures IV


Book Description

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be accessible both to newcomers and to experts already working in this field who would like to get a better understanding of this very diversified area of research.




Ultrathin Metal Films


Book Description

This research monograph discusses the close correlation between the magnetic and structural properties of thin films in the context of numerous examples of epitaxial metal films, while emphasis is laid on the stabilization of novel structures compared to the bulk material. Further options, possibilities, and limits for applications are given. Techniques for the characterization of thin films are addressed as well.




Magnetic Ultra Thin Films, Multilayers and Surfaces


Book Description

The Symposium on Magnetic Ultrathin Films, Multilayers and Surfaces, hosted by the European Materials Research Society, was held at the Palais de la Musique et des Congré in Strasbourg, France on June 4-7, 1996. Its central theme was the relationship of magnetic properties and device performance to structure at the nano and micrometer length scale. Research on the magnetism of surfaces, ultrathin films and multilayers has increased dramatically during recent years. This development was triggered by the discovery of coupling between ferromagnetic layers across nonmagnetic spacer layers and of the giant magnetoresistance effect in systems of reduced dimension using various micro and nanofabrication techniques has become a subject of special interest. It is certainly the promising application potential of these effects in new magnetic recording device geometries which causes this intensive research, which is done both by companies and at universities and research institutes. A selection of invited and contributed papers presented at the Symposium and accepted for publication is contained in this volume. The contents of these proceedings are organized into seven sections. A. Nanowires, Nanoparticles, Nanostructuring B. Ultrathin Films and Surfaces, Characterization C. Giant Magnetoresistance D. Coupling, Tunneling E. Growth, Structure, Magnetism F. Growth, Structure, Magnetoresistance G. Coupling, Magnetic processes, Magneto-optics. The first four sections contain invited and oral contributed papers in the listed research domains, while the last three sections contain the contributions presented during three large poster sessions.




Magnetic Structures of 2D and 3D Nanoparticles


Book Description

Magnetic nanoparticles appear naturally in rock magnetism together with a large distribution of sizes and shapes. They have numerous applications from nano-size magnetic memories to metamaterials for electromagnetic waves as well as biological applications such as nanosurgery with minimal traumatism. Their long-ranged size- and shape-dependent dipolar interactions provide numerous useful properties. This book describes the preparation as well as the magnetic properties of nanoparticles and also considers 2D dots, nearly spherical samples, elongated samples, and various assemblies of nanoparticles. The authors report the static magnetic structures and dynamic properties of these nanoparticles and the topological defects in 2D and 3D nanoparticles with new examples of S-shaped vortex or antivortex and of bent vortex or antivortex in 3D nanoparticles. The spectrum of magnetic excitations is shown to exhibit the occurrence of gaps, a key for magnonic metamaterial devices. Magnetic excited states are also considered with their coupling to nanoparticle elastic properties.