Unconventional Models of Computation, UMC’2K


Book Description

This book contains papers presented at the 2nd International Conference on Unconventional Models of Computation (UMCK'2K), which was held at Solvay Institutes, Brussels, Belgium, in December 2000. Computers as we know them may be getting better and cheaper, and doing more for us, but they are still unable to cope with many tasks of practical interest. Nature, though, has been 'computing' with molecules and cells for billions of years, and these natural processes form the main motivation for the construction of radically new models of computation, the core theme of the papers in this volume. Unconventional Models of Computation, UMCK'2K covers all major areas of unconventional computation, including quantum computing, DNA-based computation, membrane computing and evolutionary algorithms.




Unconventional Computation


Book Description

This book constitutes the refereed proceedings of the 5th International Conference on Unconventional Computation, UC 2006, held in York, UK, in September 2006. The 17 revised full papers presented together with four invited full papers were carefully reviewed and selected for inclusion in the book. All current aspects of unconventional computation are addressed - theory as well as experiments and applications.




Unconventional Computation


Book Description

There is a world beyond Turing, as more and more computer researchers are demonstrating, but where would you find out about the current leading edge in unconventional computation? Here, in this fascinating work that is the refereed proceedings of the 6th International Conference on Unconventional Computation, held in Kingston, Canada, in August 2007. The 17 revised full papers presented together with 4 invited papers were carefully reviewed and selected for inclusion in the book. All current aspects of unconventional computation are addressed.




Unconventional Computation


Book Description

The Fourth International Conference on Unconventional Computation, UC 2005, organized under the auspices of EATCS by the Centre for Discrete Mathematics and Theoretical Computer Science and the Department of C- puter Science and Arti?cial Intelligence of the University of Seville, was held in Seville, October 3–7, 2005. Seville, one of the most beautiful cities in Spain, is at its best in October. An explosion of colour and contrast: ?amenco, bull?ghting, and a lively at- sphere in the streets due to the open and friendly nature of its people. The river Guadalquivir, the Cathedral and the Golden Tower are all places full of magic where the visitor can feel the spirit of a city which is eternally romantic. The series of International Conferences Unconventional Computation (UC),https://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/isdevoted to all aspects of unconventional computation, theory as well as experiments and applications. Typical, but not exclusive, topics are: natural computing including quantum, cellular,molecular, neural and evolutionarycomputing; chaosand - namical systems based computing; and various proposals for computations that go beyond the Turing model. The ?rst venue of the Unconventional Computation Conference (formerly called Unconventional Models of Computation) was Auckland, New Zealand in 1998; subsequent sites of the conference were Brussels, Belgium in 2000 and Kobe, Japan in 2002. The titles of the proceedings volumes from past UC Conferences are as follows: 1. C.S. Calude, J. Casti, M.J. Dinneen (eds.). Unconventional Models of C- putation, Springer-Verlag, Singapore, 1998, viii + 426 pp. ISBN: 981-3083- 69-7.




Unconventional Computation


Book Description

This book constitutes the refereed proceedings of the 8th International Conference on Unconventional Computation, UC 2009, held in Ponta Delgada, Portugal, in September 2009. The 18 revised full papers presented together with 8 invited talks, 3 tutorials and 5 posters were carefully reviewed and selected from 40 submissions. The papers are devoted to all aspects of unconventional computation ranging from theoretical and experimental aspects to various applications. Typical topics are: natural computing including quantum; cellular, molecular, neural and evolutionary computing; chaos and dynamical system-based computing; and various proposals for computational mechanisms that go beyond the Turing model.




Membrane Computing


Book Description

This book constitutes the thoroughly refereed extended postproceedings of the 6th International Workshop on Membrane Computing, WMC 2005, held in Vienna, Austria, in July 2005. The 20 revised full papers presented together with 5 invited papers went through two rounds of reviewing and improvement. The papers in this volume cover all the main directions of research in membrane computing, ranging from theoretical topics in mathematics and computer science, to application issues, especially in biology. More specifically, these papers present research on topics such as: computational power and complexity classes, new types of P systems, relationships to Petri nets, quantum computing, and brane calculi, determinism vs. nondeterminism, hierarchies, the size of small families, algebraic approaches, and designing polynomial solutions to NP-complete problems through the use of membrane systems.




Computing with Cells


Book Description

Membrane systems are a new class of distributed and parallel model of computation inspired by the subdivision of living cells into compartments delimited by membranes. Their hierarchical internal structure, their locality of interactions, their inherent parallelism and also their capacity to create new compartments, represent the distinguishing hallmarks of membrane systems. Membrane computing, the study of membrane systems, is a fascinating and fast growing area of research. The main streams of current investigations in Membrane Computing concern theoretical computer science and the modelling of complex systems. In this monograph Pierluigi Frisco considers the former trend: he presents an in-depth study of the formal language and computational complexity aspects of the most widely investigated models of membrane systems. This study gives a comprehensive understanding of the computational power of the models considered, shows different proof techniques used for such study, and introduces links highlighting the similarities and differences between the their computational power. These models cover a broad range of features, giving a grasp of the enormous flexibility of the framework offered by membrane systems. Aimed at graduates and researchers in the field, who can use it as a reference text, and to people with an initial interest in Membrane Computing, who can use it as a clear and up to date starting point for Membrane Computing.




DNA Computing


Book Description

Biomolecular computing has emerged as an interdisciplinary ?eld that draws - gether chemistry, computer science, mathematics, molecular biology, and physics. Our knowledge on DNA nanotechnology and biomolecular computing increases exponentially with every passing year. The international meeting on DNA Based Computers has been a forum where scientists with di?erent backgrounds, yet sharing a common interest in biomolecular computing, meet and present their latest results. Continuing this tradition, the 8th International Meeting on DNA Based Computers (DNA8) focuses on the current theoretical and experimental results with the greatest impact. Papers and poster presentations were sought in all areas that relate to b- molecular computing, including (but not restricted to): algorithms and appli- tions, analysis of laboratory techniques/theoretical models, computational p- cesses in vitro and in vivo, DNA-computing-based biotechnological applications, DNA devices, error evaluation and correction, in vitro evolution, models of biomolecular computing (using DNA and/or other molecules), molecular - sign, nucleic acid chemistry, and simulation tools. Papers and posters with new experimental results were particularly encouraged. Authors who wished their work to be considered for either oral or poster presentation were asked to select from one of two submission “tracks”: – Track A - Full Paper – Track B - One-Page Abstract For authors with late-breaking results, or who were submitting their manuscript to a scienti?c journal, a one-page abstract, rather than a full paper, could be submitted in Track B. Authors could (optionally) include a preprint of their full paper, for consideration only by the program committee.




Applications of Membrane Computing


Book Description

Membrane computing is a branch of natural computing which investigates computing models abstracted from the structure and functioning of living cells and from their interactions in tissues or higher-order biological structures. The models considered, called membrane systems (P systems), are parallel, distributed computing models, processing multisets of symbols in cell-like compartmental architectures. In many applications membrane systems have considerable advantages – among these are their inherently discrete nature, parallelism, transparency, scalability and nondeterminism. In dedicated chapters, leading experts explain most of the applications of membrane computing reported so far, in biology, computer science, computer graphics and linguistics. The book also contains detailed reviews of the software tools used to simulate P systems.




Aspects of Molecular Computing


Book Description

Molecular computing is a rapidly growing subarea of natural computing. On the one hand, molecular computing is concerned with the use of bio-molecules for the purpose of actual computations while, on the other hand, it attempts to understand the computational nature of molecular processes going on in living cells. The book presents a unique and authorative state-of-the-art survey on current research in molecular computing: 30 papers by leading researchers in the area are drawn together on the occasion of the 70th birthday of Tom Head, a pioneer in molecular computing. Among the topics addressed are molecular tiling, DNA self-assembly, splicing systems, DNA-based cryptography, DNA word design, gene assembly, and membrane computing.