Understanding Structure, Thermodynamics, and Dynamics of Silica Liquids and Glasses Using Atomistic Simulations and Machine Learning


Book Description

Glass materials are found all around us, but fundamental questions about the nature of their amorphous structures and formation processes remain unsolved after decades of research. In this dissertation, silica, an archetype glass former, is taken as an example glass for investigations into glass structures, thermodynamics, dynamics, two-level systems (TLS), and atomic interactions based on molecular dynamics simulations and machine learning methods. Specifically, we investigate the structure-thermodynamic stability relationship using a library of silica inherent structures generated from melt-quench and replica exchange molecular dynamics simulations. Based on machine learning, we find that short-range and medium-range features play very different roles on the glass stability across the liquid and glass regions. We then revisit an interesting dynamical transition in silica liquid, the fragile-to-strong transition (FTS), from the perspective of microscopic dynamics. By machine learning to classify atomic rearrangements, the FTS is found to originate from the two types of energy barriers in silica, representing a fast and a slow microscopic dynamics channel. The fast channel controlled by the short-range defects closes rapidly with decreasing temperature, causing the fragility crossover. A similar approach is also applied to investigate TLS. We predict TLS densities in a large number of inherent structures with a variety of glass stability using machine learning and verify them using molecular dynamics simulations. We find a decrease in the TLS density with the fictive temperature, which can be described by a quadratic function as suggested by the random first-order transition theory. Lastly, we introduce a linear machine learning force matching approach that can directly extract pair atomic interactions from ab initio calculations in amorphous materials. This approach is applied to silica to understand the atomic interactions within its structure and develop a new classical force field. Through the comprehensive fundamental investigations on the nature of silica glass and liquid, I hope the understandings and methods presented in this dissertation can be transferred to study other glass-forming systems.




Silicate Glasses and Melts


Book Description

Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses. This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy. - Brings together multidisciplinary research scattered across the scientific literature into one reference, with a focus on silicate melts and their application to natural systems - Emphasizes linking melt properties to melt structure - Includes a discussion of the pros and cons of the use of glass as a proxy for melt structure and properties - Written by highly regarded experts in the field who, among other honors, were the 2006 recipients of the prestigious G.W. Morey award of the American Ceramic Society




Bulk Metallic Glasses


Book Description

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.




Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics


Book Description

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.




Advanced Mineralogy


Book Description

All existing introductory reviews of mineralogy are written accord ing to the same algorithm, sometimes called the "Dana System of Mineralogy". Even modern advanced handbooks, which are cer tainly necessary, include basic data on minerals and are essentially descriptive. When basic information on the chemistry, structure, optical and physical properties, distinguished features and para genesis of 200-400 minerals is presented, then there is practically no further space available to include new ideas and concepts based on recent mineral studies. A possible solution to this dilemma would be to present a book beginning where introductory textbooks end for those already famil iar with the elementary concepts. Such a volume would be tailored to specialists in all fields of science and industry, interested in the most recent results in mineralogy. This approach may be called Advanced Mineralogy. Here, an attempt has been made to survey the current possibilities and aims in mineral matter investigations, including the main characteristics of all the methods, the most important problems and topics of mineral ogy, and related studies. The individual volumes are composed of short, condensed chap ters. Each chapter presents in a complete, albeit condensed, form specific problems, methods, theories, and directions of investigations, and estimates their importance and strategic position in science and industry.







Machine Learning Meets Quantum Physics


Book Description

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.




Molecular Dynamics Simulations of Disordered Materials


Book Description

This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering "traditional" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and first-principles level) and the structure of materials for which, quite often, direct experimental structural information is rather scarce or absent. The book features specific examples of how quite subtle features of the structure of glasses can be unraveled by relying on the predictive power of molecular dynamics, used in connection with a realistic description of forces.




Dynamical Heterogeneities in Glasses, Colloids, and Granular Media


Book Description

Most of the solid materials we use in everyday life, from plastics to cosmetic gels exist under a non-crystalline, amorphous form: they are glasses. Yet, we are still seeking a fundamental explanation as to what glasses really are and to why they form. In this book, we survey the most recent theoretical and experimental research dealing with glassy physics, from molecular to colloidal glasses and granular media. Leading experts in this field present broad and original perspectives on one of the deepest mysteries of condensed matter physics, with an emphasis on the key role played by heterogeneities in the dynamics of glassiness.




Na-ion Batteries


Book Description

This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.