Separation of Flow


Book Description

Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation. Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapters consider the study of flow separation on the two-dimensional body, flow separation on three-dimensional body shape and particularly on bodies of revolution. This book discusses as well the analytical solutions of the unsteady flow separation. The final chapter deals with the purpose of separation flow control to raise efficiency or to enhance the performance of vehicles and fluid machineries involving various engineering applications. This book is a valuable resource for engineers.




The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains


Book Description

This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.




Unsteady Separated Flows


Book Description




Asymptotic Theory of Separated Flows


Book Description

Boundary-layer separation from a rigid body surface is one of the fundamental problems of classical and modern fluid dynamics. The major successes achieved since the late 1960s in the development of the theory of separated flows at high Reynolds numbers are in many ways associated with the use of asymptotic methods. The most fruitful of these has proved to be the method of matched asymptotic expansions, which has been widely used in mechanics and mathematical physics. There have been many papers devoted to different problems in the asymptotic theory of separated flows and we can confidently speak of the appearance of a very productive direction in the development of theoretical hydrodynamics. This book will present this theory in a systematic account. The book will serve as a useful introduction to the theory, and will draw attention to the possibilities that application of the asymptotic approach provides.




IUTAM Symposium on Unsteady Separated Flows and their Control


Book Description

This Volume is the Proceedings of the IUTAM Symposium on Unsteady Separated Flows and Their Control held in Corfu, Greece, 18–22 June 2007. This was the second IUTAM Symposium on this subject, following the symposium in Toulouse, in April 2002. The Symposium consisted of single plenary sessions with invited lectures, - lected oral presentations, discussions on special topics and posters. The complete set of papers was provided to all participants at the meeting. The thematic sessions of this Symposium are presented in the following: Experimental techniques for the unsteady ow separation Theoretical aspects and analytical approaches of ow separation Instability and transition Compressibility effects related to unsteady separation Statistical and hybrid turbulence modelling for unsteady separated ows Direct and Large-Eddy Simulation of unsteady separated ows Theoretical/industrial aspects of unsteady separated ow control This IUTAM Symposium concerned an important domain of Theoretical and Applied Mechanics nowadays. It focused on the problem of ow separation and of its control. It achieved a uni ed approach regrouping the knowledge provided from theoretical, experimental, numerical simulation and modelling aspects for unsteady separated ows (incompressible and compressible regimes) and included ef cient control devices to achieve attenuation or suppression of separation. The subject - eas covered important themes in the domain of fundamental research as well as in the domain of applications.







Mathematical Modeling of Unsteady Inviscid Flows


Book Description

This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.




Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




Unsteady Combustor Physics


Book Description

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.




Boundary layer research


Book Description