Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Grid Generation Methods


Book Description

This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.




Basic Structured Grid Generation


Book Description

Finite element, finite volume and finite difference methods use grids to solve the numerous differential equations that arise in the modelling of physical systems in engineering. Structured grid generation forms an integral part of the solution of these procedures. Basic Structured Grid Generation provides the necessary mathematical foundation required for the successful generation of boundary-conforming grids and will be an important resource for postgraduate and practising engineers.The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques. - A practical, straightforward approach to this complex subject for engineers and students. - A key technique for modelling physical systems.




Computational Fluid Dynamics


Book Description

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.







Handbook of Grid Generation


Book Description

Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.