Upgrading Petroleum Residues and Heavy Oils


Book Description

"This useful reference offers in-depth coverage of current techniques for converting heavy oils and residues into more valuable distillates.Examines the chemistry of heavy hydrocarbon feeds and their properties important to engineering design, including phase behavior, reaction kinetics, and thermodynamic and transport characteristics!"




Processing of Heavy Crude Oils


Book Description

Unconventional heavy crude oils are replacing the conventional light crude oils slowly but steadily as a major energy source. Heavy crude oils are cheaper and present an opportunity to the refiners to process them with higher profit margins. However, the unfavourable characteristics of heavy crude oils such as high viscosity, low API gravity, low H/C ratio, chemical complexity with high asphaltenes content, high acidity, high sulfur and increased level of metal and heteroatom impurities impede extraction, pumping, transportation and processing. Very poor mobility of the heavy oils, due to very high viscosities, significantly affects production and transportation. Techniques for viscosity reduction, drag reduction and in-situ upgrading of the crude oil to improve the flow characteristics in pipelines are presented in this book. The heavier and complex molecules of asphaltenes with low H/C ratios present many technological challenges during the refining of the crude oil, such as heavy coking on catalysts. Hydrogen addition and carbon removal are the two approaches used to improve the recovery of value-added products such as gasoline and diesel. In addition, the heavy crude oil needs pre-treatment to remove the high levels of impurities before the crude oil can be refined. This book introduces the major challenges and some of the methods to overcome them.




Upgrading Oilsands Bitumen and Heavy Oil


Book Description

"The emphasis throughout is to link the fundamentals of the molecules through to the economic drivers for the industry, because this combination determines the technology used for processing."-From the Introduction The high demand for quality petroleum products necessitates ongoing innovation in the science and engineering underlying oilsands extraction and upgrading. Beginning with a thorough grounding in the composition, fluid properties, reaction behaviour, and economics of bitumen and heavy oil, Murray Gray then delves into current processing technologies, particularly those used at full commercial scale. The tables of data on composition, yield, and behaviour of oilsands bitumen and heavy oil fractions are extensive. Though the focus is on bitumen from Alberta's oilsands-the largest resource in the world-the science applies to upgrading of heavy oil and petroleum residue feeds worldwide. Upgrading Oilsands Bitumen and Heavy Oil lays out the current best practice for engineers and scientists in the oilsands and refining industries, government personnel, academics, and students.




Subsurface Upgrading of Heavy Crude Oils and Bitumen


Book Description

Heavy crude oils and bitumen represent more than 50% of all hydrocarbons available on the planet. These feedstocks have a low amount of distillable material and high level of contaminants that make their production, transportation, and refining difficult and costly by conventional technologies. Subsurface Upgrading of Heavy Crude Oils and Bitumen is of interest to the petroleum industry mainly because of the advantages compared to aboveground counterparts. The author presents an in-depth account and a critical review of the progress of industry and academia in underground or In-Situ upgrading of heavy, extra-heavy oils and bitumen, as reported in the patent and open literature. This work is aimed to be a standalone monograph, so three chapters are dedicated to the composition of petroleum and fundamentals of crude oil production and refining. Key Features: Offers a multidisciplinary scope that will appeal to chemists, geologists, biologists, chemical engineers, and petroleum engineers Presents the advantages and disadvantages of the technologies considered Discusses economic and environmental considerations for all the routes evaluated and offers perspectives from experts in the field working with highlighted technologies




Fundamentals of Petroleum Refining


Book Description

Fundamentals of Petroleum Refining presents the fundamentals of thermodynamics and kinetics, and it explains the scientific background essential for understanding refinery operations. The text also provides a detailed introduction to refinery engineering topics, ranging from the basic principles and unit operations to overall refinery economics. The book covers important topics, such as clean fuels, gasification, biofuels, and environmental impact of refining, which are not commonly discussed in most refinery textbooks. Throughout the source, problem sets and examples are given to help the reader practice and apply the fundamental principles of refining. Chapters 1-10 can be used as core materials for teaching undergraduate courses. The first two chapters present an introduction to the petroleum refining industry and then focus on feedstocks and products. Thermophysical properties of crude oils and petroleum fractions, including processes of atmospheric and vacuum distillations, are discussed in Chapters 3 and 4. Conversion processes, product blending, and alkylation are covered in chapters 5-10. The remaining chapters discuss hydrogen production, clean fuel production, refining economics and safety, acid gas treatment and removal, and methods for environmental and effluent treatments. This source can serve both professionals and students (on undergraduate and graduate levels) of Chemical and Petroleum Engineering, Chemistry, and Chemical Technology. Beginners in the engineering field, specifically in the oil and gas industry, may also find this book invaluable. - Provides balanced coverage of fundamental and operational topics - Includes spreadsheets and process simulators for showing trends and simulation case studies - Relates processing to planning and management to give an integrated picture of refining




Practical Advances in Petroleum Processing


Book Description

Includes topics not found together in books on petroleum processing: economics, automation, process modeling, online optimization, safety, environmental protection Combines overviews of petroleum composition, refinery processes, process automation, and environmental protection with comprehensive chapters on recent advances in hydroprocessing, FCC, lubricants, hydrogen management Gives diverse perspectives, both geographic and topical, because contributors include experts from eight different countries in North America, Europe and Asia, representing oil companies, universities, catalyst vendors, process licensors, consultants and engineering contractors




Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat - Volume II


Book Description

Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat is a component of Encyclopedia of Energy Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat with contributions from distinguished experts in the field discusses matters of great relevance to our world such as: Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat; Coal Geology and Geochemistry; Coal Technology; Oil Shale; Natural Bitumen (Tar Sands) and Heavy Oil; Peat and Peatland. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.




The Science and Technology of Unconventional Oils


Book Description

This book, The Science and Technology of Unconventional Oils: Finding Refining Opportunities, intends to report the collective physical and chemical knowledge of unconventional oils (heavy, extra-heavy, sour/acid, and shale oil) and the issues associated with their refining for the production of transportation fuels. It will focus on the discussion of the scientific results and technology activities of the refining of unconventional oils. The presence of reactive and refractory compounds and components that negatively impact refining processing (the "bad actors") are discussed and analyzed. The commercially available technologies, with their reported improvements and emerging ideas, concepts, and technologies, are described. This comprehensive overview constitutes the basis for establishing technology gaps, and in return sets the science and technology needs to be addressed in the future. In summary, this book incorporates the relevant knowledge of processing unconventional crude oils and of the "Bottom-of-the-Barrel" fraction, describing the related commercially available and emerging technologies to contribute to the identification of existing gaps. - Relates physicochemical properties and phenomenological behavior of unconventional oils to refining challenges - Describes commercially available technologies and the problems they solve - Lists recent improvements in various processes and identifies technology gaps - Explains emerging new refining technologies and the problems they solve - Discusses future needs and challenges, and suggests further research and development needs




Experimental Methods for Evaluation of Hydrotreating Catalysts


Book Description

Presents detailed information and study cases on experiments on hydrotreating catalysts for the petroleum industry Catalytic hydrotreating (HDT) is a process used in the petroleum refining industry for upgrading hydrocarbon streams—removing impurities, eliminating metals, converting asphaltene molecules, and hydrocracking heavy fractions. The major applications of HDT in refinery operations include feed pretreatment for conversion processes, post-hydrotreating distillates, and upgrading heavy crude oils. Designing HDT processes and catalysts for successful commercial application requires experimental studies based on appropriate methodologies. Experimental Methods for Evaluation of Hydrotreating Catalysts provides detailed descriptions of experiments in different reaction scales for studying the hydrotreating of various petroleum distillates. Emphasizing step-by-step methodologies in each level of experimentation, this comprehensive volume presents numerous examples of evaluation methods, operating conditions, reactor and catalyst types, and process configurations. In-depth chapters describe experimental setup and procedure, analytical methods, calculations, testing and characterization of catalyst and liquid products, and interpretation of experiment data and results. The text describes experimental procedure at different levels of experimentation—glass reactor, batch reactor, continuous stirred tank reactor, and multiple scales of tubular reactors—using model compounds, middle distillates and heavy oil. This authoritative volume: Introduces experimental setups used for conducting research studies, such as type of operation, selection of reactor, and analysis of products Features examples focused on the evaluation of different reaction parameters and catalysts with a variety of petroleum feedstocks Provides experimental data collected from different reaction scales Includes experiments for determining mass transfer limitations and deviation from ideality of flow pattern Presents contributions from leading scientists and researchers in the field of petroleum refining Experimental Methods for Evaluation of Hydrotreating Catalysts is an indispensable reference for researchers and professionals working in the area of catalytic hydrotreating, as well as an ideal textbook for courses in fields such as chemical engineering, petrochemical engineering, and biotechnology.




Hydroprocessing of Heavy Oils and Residua


Book Description

Many oil refineries employ hydroprocessing for removing sulfur and other impurities from petroleum feedstocks. Capable of handling heavier feedstocks than other refining techniques, hydroprocessing enables refineries to produce higher quality products from unconventional- and formerly wasted- sources. Hydroprocessing of Heavy Oils and Residua