Uranium - Past and Future Challenges


Book Description

This book is the collection of papers from the latest International Uranium Mining and Hydrogeology Conference (UMH VII) held in September 2014, in Freiberg, Germany. It is divided to five sessions: Uranium Mining, Uranium and Phosphates, Clean-up technologies for water and soil. Uranium and daughter nuclides and basic research and modeling. Each session covers a wide range of related topic and provides readers with up to date research and solutions on those matters.




Uranium, Mining and Hydrogeology


Book Description

Subject of the book is Uranium and its migration in aquatic environments. The following subjects are emphasised: Uranium mining, Phosphate mining, mine closure and remediation, Uranium in groundwater and in bedrock, biogeochemistry of Uranium, environmental behavior, and modeling. Particular results from the leading edge of international research are presented.




Forty Years of Uranium Resources, Production and Demand in Perspective


Book Description

The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference source on the uranium industry. This publication collates and analyses key information drawn from the twenty editions of the Red Book published between 1965 and 2004, in order to set out a comprehensive review of developments in the world uranium industry from the birth of civilian nuclear energy through to the beginning of the 21st century. It summarises developments in the major uranium-producing countries and topics covered include: installed nuclear capacity, reactor-related uranium requirements, market price, exploration, resources, production, natural and enriched uranium inventories, thorium, mine start-up and closure histories, environmental aspects of uranium mining and processing.




Depleted Uranium Induced Petkau Effect


Book Description

The primary objective of this study is to contribute to a better understanding of the interaction of depleted uranium as a source of low dose radiation with the living world and humans in a contaminated environment. There has been increased interest in biological effects of low dose radiation after the incident in Chernobyl. Uncertainty of epidemiological studies about the health effects of low-dose radiation arises from the fact that the biological effects of low-dose radiation do not relate obligatory to DNA damage. Military use of depleted uranium (DU) for decades put the problem of low-dose radiation exposure in the spotlight. The explanation related to the limited effects of Ñ-emitting nuclear weapons, including DU, was based to some extent on the fact that alpha particles have a short track in air. This paradigm has changed with the realisation that nano- and micro-sized particles of DU could have a global atmospheric movement. The idea about the spreading of uranium particles through air masses across the globe arose from the results of air pollution measurement. Due to uncontrolled military use of high amounts (a thousand tons) of depleted uranium, numerous unusual environmental physical manifestations were recorded in the last two or three decades. Simultaneous monitoring of natural phenomena on Earth and in the atmosphere has revealed an exceptional parallelism between the phenomena in the environment and in the living world. Our knowledge has evolved from in-vitro studies of radiation exposure to a more comprehensive understanding of unexpected and poorly understood natural phenomena, whose consequences may be achievable according to the theory of litosphere-atomsphere-ionospehere and biosphere coupling. The emission of radiation in the course of several decades due to corrosion of scattered remnants of DU armaments, which has been intensified by the repeated bombing of the regions within the range of the transfer of radioactive particles through the air, strikes a broad territory and numerous populations, and unavoidably leads to in-vivo Petkau effect. The Petkau effect is a challenge for science to declare the future health strategy with the main goal focused on minimising the early as well as delayed in-vivo effects of depleted uranium. As inhaled air is the main source of internal contamination, further research on this topic is valuable, especially in terms of overcoming inter-individual variability. The authors propose a simple model based on apoptotic parameters and artificial network method for individualised estimation of tissue response to low-dose tobacco exposure. Non-targeted effects of radiation are time-evolving and can lead to delayed health effects, including cancerogenesis. The authors discuss the importance of an individual approach to the diagnosis and selection of appropriate therapy, based not only on the results of the expression analysis, but also on metabolic and apoptotic tissue properties. Humanity is the main subject of the authors' study. Understanding the basic principles of cell biology and radiation interaction with living matter is supported by authentic medical data obtained from patients originating from the territories which were geographically close to each other (Serbia and Montenegro seaside, as well as Bosnia and Herzegovina, the territories of the former Yugoslavia).




Depleted Uranium Induced Petkau Effect


Book Description

The primary objective of this study is to contribute to a better understanding of the interaction of depleted uranium as a source of low dose radiation with the living world and humans in a contaminated environment. There has been increased interest in biological effects of low dose radiation after the incident in Chernobyl. Uncertainty of epidemiological studies about the health effects of low-dose radiation arises from the fact that the biological effects of low-dose radiation do not relate obligatory to DNA damage. Military use of depleted uranium (DU) for decades put the problem of low-dose radiation exposure in the spotlight. The explanation related to the limited effects of ?-emitting nuclear weapons, including DU, was based to some extent on the fact that alpha particles have a short track in air. This paradigm has changed with the realization that nano- and micro-sized particles of DU could have a global atmospheric movement. The idea about the spreading of uranium particles through air masses across the globe arose from the results of air pollution measurement. Due to uncontrolled military use of high amounts (a thousand tons) of depleted uranium, numerous unusual environmental physical manifestations were recorded in the last two or three decades. Simultaneous monitoring of natural phenomena on Earth and in the atmosphere has revealed an exceptional parallelism between the phenomena in the environment and in the living world. Our knowledge has evolved from in-vitro studies of radiation exposure to a more comprehensive understanding of unexpected and poorly understood natural phenomena, whose consequences may be achievable according to the theory of litosphere-atomsphere-ionospehere and biosphere coupling. The emission of radiation in the course of several decades due to corrosion of scattered remnants of DU armaments, which has been intensified by the repeated bombing of the regions within the range of the transfer of radioactive particles through the air, strikes a broad territory and numerous populations, and unavoidably leads to in-vivo Petkau effect. The Petkau effect is a challenge for science to declare the future health strategy with the main goal focused on minimizing the early as well as delayed in-vivo effects of depleted uranium. As inhaled air is the main source of internal contamination, further research on this topic is valuable, especially in terms of overcoming inter-individual variability. The authors propose a simple model based on apoptotic parameters and artificial network method for individualized estimation of tissue response to low-dose tobacco exposure. Non-targeted effects of radiation are time-evolving and can lead to delayed health effects, including cancerogenesis. The authors discuss the importance of an individual approach to the diagnosis and selection of appropriate therapy, based not only on the results of the expression analysis, but also on metabolic and apoptotic tissue properties. Humanity is the main subject of the authors' study. Understanding the basic principles of cell biology and radiation interaction with living matter is supported by authentic medical data obtained from patients originating from the territories which were geographically close to each other (Serbia and Montenegro seaside, as well as Bosnia and Herzegovina, the territories of the former Yugoslavia).




Uranium Enrichment and Nuclear Weapon Proliferation


Book Description

Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.




Analysis of Uranium Supply to 2050


Book Description

This report contains the first International Atomic Energy Agency projection of uranium supply and demand to 2050 and provides an understanding of how some alternative uranium supply scenarios could evolve over the period. The analysis is based on the current knowledge of uranium resources and production facilities, and takes into account the premise that they can operate with minimal environmental impact and employ the best practices in planning, operations, decommissioning and closure.




Uranium Paris


Book Description




Uranium Frenzy


Book Description

A history of the U.S. Atomic Energy Commission’s need for uranium ore in the 1950s, the frenzied search, and the aftermath. Now expanded to include the story of nuclear testing and its consequences, UraniumFrenzy has become the classic account of the uranium rush that gripped the Colorado Plateau region in the 1950s. Instigated by the U.S. government’s need for uranium to fuel its growing atomic weapons program, stimulated by Charlie Steen’s lucrative Mi Vida strike in 1952, manned by rookie prospectors from all walks of life, and driven to a fever pitch by penny stock promotions, the boom created a colorful era in the Four Corners region and Salt Lake City (where the stock frenzy was centered) but ultimately went bust. The thrill of those exciting times and the good fortune of some of the miners were countered by the darker aspects of uranium and its uses. Miners were not well informed regarding the dangers of radioactive decay products. Neither the government nor anyone else expended much effort educating them or protecting their health and safety. The effects of exposure to radiation in poorly ventilated mines appeared over time. The uranium boom is only part of the larger story of atomic weapons testing and its impact in the western United States. Nuclear explosions at the Nevada Test Site not only spurred uranium mining, they also had a disastrous impact on many Americans: downwinders in the eastward path of radiation clouds, military observers and guinea pigs in exposed positions, and Navajo and other uranium mill workers all became victims, as deaths from cancer and other radiation-caused diseases reached much higher than normal rates among them. Tons of radioactive waste left by mines, mills, and the nuclear industry and how to dispose of them are other nagging legacies of the nuclear era. Recent decades have brought multiple attempts by victims to obtain compensation from the federal government and other legal battles over disposal of nuclear waste. When courts refused to grant relief to downwinders and others, Congress eventually interceded and legislated compensation for a limited number of victims able to meet strict criteria, but did not adequately fund the program. Recently, Congress attempted to fix this shortfall, but in the meantime many downwinders and others holding compensation IOUs had died. Congressional and other efforts to dispose of waste have lately focused on Nevada and Utah, two states all too familiar with nuclear issues and reluctant to take on further radioactive burdens. “In a perceptive and touching narrative, Ringholz (The Wilderness Handbook) recalls that the Federal government in the early 1950s subsidized uranium mining for the coming atomic age. . . . Ringholz intrigues the reader with an expert blending of science, adventure, industry mania, finance, human triumph and despair and shameful official neglect.” —Publishers Weekly “The frenzied search for a reliable domestic source of uranium ore needed by the U.S. Atomic Energy Commission in the 1950s is the subject of Ringholz's breezy narrative, which is populated with colorful characters. . . . This is good popular reading for general collections in public libraries.” —Library Journal




Uranium for Nuclear Power


Book Description

Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, environmentally-benign exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas. Provides researchers in academia and industry with an authoritative overview of the front end of the nuclear fuel cycle Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety