Using LYTRO ILLUM


Book Description

Using LYTRO ILLUM provides a comprehensive overview of the Lytro ecosystem. Endorsed by Lytro, Inc., this book covers everything from what the light field is to how to take advantage of the Lytro button while shooting to how to edit your pictures outside of Lytro Desktop. It's the one guide that will take you from novice to living picture expert! The latest edition covers the new Focus Spread feature in Lytro Desktop.




Lytro Illum: An Easy Guide to the Best Features


Book Description

The Lytro Illum is a high resolution, light field digital camera that was released back in 2014. It has 8X zoom and has been reviewed for its great focus while shooting your photos. The shape of the Lytro Illum has never been seen on a camera before as it resembles a rectangular tube. The hardware and quality of the photos have been greatly improved and some cool effects have also been added. The processing speed is said to slow, however, and is one of the few down falls of the Lytro Illum digital camera.




Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields


Book Description

In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert. -In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail.




Light Field Imaging for Deflectometry


Book Description

Optical measurement methods are becoming increasingly important for high-precision production of components and quality assurance. The increasing demand can be met by modern imaging systems with advanced optics, such as light field cameras. This work explores their use in the deflectometric measurement of specular surfaces. It presents improvements in phase unwrapping and calibration techniques, enabling high surface reconstruction accuracies using only a single monocular light field camera.




Sparse representation of visual data for compression and compressed sensing


Book Description

The ongoing advances in computational photography have introduced a range of new imaging techniques for capturing multidimensional visual data such as light fields, BRDFs, BTFs, and more. A key challenge inherent to such imaging techniques is the large amount of high dimensional visual data that is produced, often requiring GBs, or even TBs, of storage. Moreover, the utilization of these datasets in real time applications poses many difficulties due to the large memory footprint. Furthermore, the acquisition of large-scale visual data is very challenging and expensive in most cases. This thesis makes several contributions with regards to acquisition, compression, and real time rendering of high dimensional visual data in computer graphics and imaging applications. Contributions of this thesis reside on the strong foundation of sparse representations. Numerous applications are presented that utilize sparse representations for compression and compressed sensing of visual data. Specifically, we present a single sensor light field camera design, a compressive rendering method, a real time precomputed photorealistic rendering technique, light field (video) compression and real time rendering, compressive BRDF capture, and more. Another key contribution of this thesis is a general framework for compression and compressed sensing of visual data, regardless of the dimensionality. As a result, any type of discrete visual data with arbitrary dimensionality can be captured, compressed, and rendered in real time. This thesis makes two theoretical contributions. In particular, uniqueness conditions for recovering a sparse signal under an ensemble of multidimensional dictionaries is presented. The theoretical results discussed here are useful for designing efficient capturing devices for multidimensional visual data. Moreover, we derive the probability of successful recovery of a noisy sparse signal using OMP, one of the most widely used algorithms for solving compressed sensing problems.




Development and Application of Light-Field Cameras in Fluid Measurements


Book Description

This book provides a comprehensive guide to 3D Light-Field camera based imaging, exploring the working principles, developments and its applications in fluid mechanics and aerodynamics measurements. It begins by discussing the fundamentals of Light-Field imaging and theoretical resolution analysis, before touching upon the detailed optics design and micro-lens array assembly. Subsequently, Light-Field calibration methods that compensate for optical distortions and establish the relations between the image and real-word 3D coordinates are covered. This is followed by Light-Field 3D reconstruction algorithms which are elaborated for micrometer-scale particles and centimeter-scale physical models. Last but not least, implementations of the preceding procedures to selected fundamental and applied flow measurement scenarios are provided at the end of the book. Development and Application of Light-Field Cameras in Fluid Measurements gives an in-depth analysis of each topic discussed, making it ideal as both an introductory and reference guide for researchers and postgraduates interested in 3D flow measurements.




Computer Vision – ACCV 2020


Book Description

The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics: Part I: 3D computer vision; segmentation and grouping Part II: low-level vision, image processing; motion and tracking Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis Part VI: applications of computer vision; vision for X; datasets and performance analysis *The conference was held virtually.




Computer Vision – ACCV 2018


Book Description

The six volume set LNCS 11361-11366 constitutes the proceedings of the 14th Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision.




Computer Vision – ECCV 2020


Book Description

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.




Computer Vision – ACCV 2016


Book Description

The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016. The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision.