Pattern Recognition and Signal Analysis in Medical Imaging


Book Description

Medical imaging is one of the heaviest funded biomedical engineering research areas. The second edition of Pattern Recognition and Signal Analysis in Medical Imaging brings sharp focus to the development of integrated systems for use in the clinical sector, enabling both imaging and the automatic assessment of the resultant data. Since the first edition, there has been tremendous development of new, powerful technologies for detecting, storing, transmitting, analyzing, and displaying medical images. Computer-aided analytical techniques, coupled with a continuing need to derive more information from medical images, has led to a growing application of digital processing techniques in cancer detection as well as elsewhere in medicine. This book is an essential tool for students and professionals, compiling and explaining proven and cutting-edge methods in pattern recognition for medical imaging. - New edition has been expanded to cover signal analysis, which was only superficially covered in the first edition - New chapters cover Cluster Validity Techniques, Computer-Aided Diagnosis Systems in Breast MRI, Spatio-Temporal Models in Functional, Contrast-Enhanced and Perfusion Cardiovascular MRI - Gives readers an unparalleled insight into the latest pattern recognition and signal analysis technologies, modeling, and applications




Pattern Recognition


Book Description

For more than 40 years, pattern recognition approaches are continuingly improving and have been used in an increasing number of areas with great success. This book discloses recent advances and new ideas in approaches and applications for pattern recognition. The 30 chapters selected in this book cover the major topics in pattern recognition. These chapters propose state-of-the-art approaches and cutting-edge research results. I could not thank enough to the contributions of the authors. This book would not have been possible without their support.




Machine Learning in Medical Imaging


Book Description

This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning in Medical Imaging, MLMI 2011, held in conjunction with MICCAI 2011, in Toronto, Canada, in September 2011. The 44 revised full papers presented were carefully reviewed and selected from 74 submissions. The papers focus on major trends in machine learning in medical imaging aiming to identify new cutting-edge techniques and their use in medical imaging.







Proceedings of Fifth International Conference on Soft Computing for Problem Solving


Book Description

The proceedings of SocProS 2015 will serve as an academic bonanza for scientists and researchers working in the field of Soft Computing. This book contains theoretical as well as practical aspects using fuzzy logic, neural networks, evolutionary algorithms, swarm intelligence algorithms, etc., with many applications under the umbrella of ‘Soft Computing’. The book will be beneficial for young as well as experienced researchers dealing across complex and intricate real world problems for which finding a solution by traditional methods is a difficult task. The different application areas covered in the proceedings are: Image Processing, Cryptanalysis, Industrial Optimization, Supply Chain Management, Newly Proposed Nature Inspired Algorithms, Signal Processing, Problems related to Medical and Health Care, Networking Optimization Problems, etc.




Abdomen and Thoracic Imaging


Book Description

The book covers novel strategies of state of the art in engineering and clinical analysis and approaches for analyzing abdominal imaging, including lung, mediastinum, pleura, liver, kidney and gallbladder. In the last years the imaging techniques have experienced a tremendous improvement in the diagnosis and characterization of the pathologies that affect abdominal organs. In particular, the introduction of extremely fast CT scanners and high Magnetic field MR Systems allow imaging with an exquisite level of detail the anatomy and pathology of liver, kidney, pancreas, gallbladder as well as lung and mediastinum. Moreover, thanks to the development of powerful computer hardware and advanced mathematical algorithms the quantitative and automated\semi automated diagnosis of the pathology is becoming a reality. Medical image analysis plays an essential role in the medical imaging field, including computer-aided diagnosis, organ/lesion segmentation, image registration, and image-guided therapy. This book will cover all the imaging techniques, potential for applying such imaging clinically, and offer present and future applications as applied to the abdomen and thoracic imaging with the most world renowned scientists in these fields. The main aim of this book is to help advance scientific research within the broad field of abdominal imaging. This book focuses on major trends and challenges in this area, and it presents work aimed to identify new techniques and their use in medical imaging analysis for abdominal imaging. ​




Protocols and Methodologies in Basic Science and Clinical Cardiac MRI


Book Description

This book focuses on the practical issues of the implementation of state-of-the-art acquisition methodologies and protocols for both basic science and clinical practice. It is a practical guidebook for both beginners and advanced users for easy and practical implementation of acquisition protocols. It is relevant for a wide audience that ranges from students, residents, fellows, basic scientists, physicists, engineers, and medical practitioners. The novelty of this book relates to its intended practical use and focus on state-of-the-art cardiac MRI techniques that span both the clinical and basic science fields. In comparison and contrast to other pre-existing books, this book will distinguish from others for its practical usefulness and conciseness. Correspondingly, the book will be used as a handbook (quick reference) for new starters or people who would like to establish state-of-the-art cardiac MRI techniques in their institutions. Given the historical evolution of technique development in MRI, the clinical and basic science topics will be described separately. However, in instances where basic science development complemented (or is envisaged to complement) clinical development (e.g., Diffusion MRI and tractography), every effort will be made to allow a comprehensive review and associations of the clinical/basic science subfields.




Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques


Book Description

Medical images are at the base of many routine clinical decisions and their influence continues to increase in many fields of medicine. Since the last decade, computers have become an invaluable tool for supporting medical image acquisition, processing, organization and analysis. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques provides a panorama of the current boundary between biomedical complexity coming from the medical image context and the multiple techniques which have been used for solving many of these problems. This innovative publication serves as a leading industry reference as well as a source of creative ideas for applications of medical issues.




Biomedical Image Segmentation


Book Description

As one of the most important tasks in biomedical imaging, image segmentation provides the foundation for quantitative reasoning and diagnostic techniques. A large variety of different imaging techniques, each with its own physical principle and characteristics (e.g., noise modeling), often requires modality-specific algorithmic treatment. In recent years, substantial progress has been made to biomedical image segmentation. Biomedical image segmentation is characterized by several specific factors. This book presents an overview of the advanced segmentation algorithms and their applications.




Machine Learning Algorithms for Signal and Image Processing


Book Description

Machine Learning Algorithms for Signal and Image Processing Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks. Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as: Speech recognition, image reconstruction, object classification and detection, and text processing Healthcare monitoring, biomedical systems, and green energy How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.