Using Robots in Hazardous Environments


Book Description

There have been major recent advances in robotic systems that can replace humans in undertaking hazardous activities in demanding or dangerous environments. Published in association with the CLAWAR (Climbing and Walking Robots and Associated Technologies Association) (www.clawar.org), this important book reviews the development of robotic systems for de-mining and other risky activities such as fire-fighting.Part one provides an overview of the use of robots for humanitarian de-mining work. Part two discusses the development of sensors for mine detection whilst Part thee reviews developments in both teleoperated and autonomous robots. Building on the latter, Part four concentrates on robot autonomous navigation. The final part of the book reviews research on multi-agent-systems (MAS) and the multi-robotics-systems (MRS), promising tools that take into account modular design of mobile robots and the use of several robots in multi-task missions.With its distinguished editors and international team of contributors, Using robots in hazardous environments: landmine detection, de-mining and other applications is a standard reference for all those researching the use of robots in hazardous environments as well as government and other agencies wishing to use robots for dangerous tasks such as landmine detection and disposal. - Reviews the development of robotic systems for de-mining and other risky activities - Discusses the development and applications of sensors for mine detection using different robotic systems - Examines research on multi-agent-systems and multi-robotics systems




Robots Operating in Hazardous Environments


Book Description

Robots are used in industry, rescue missions, military operations, and subwater missions. Their use in hazardous environments is crucial in terms of occupational safety of workers and the health of rescue and military operations. This book presents several hazardous environment operations and safe operations of robots interacting with people in the context of occupational health and safety.




Search and Rescue Robotics


Book Description

In the event of large crises (earthquakes, typhoons, floods, ...), a primordial task of the fire and rescue services is the search for human survivors on the incident site. This is a complex and dangerous task, which - too often - leads to loss of lives among the human crisis managers themselves. This book explains how unmanned search can be added to the toolkit of the search and rescue workers, offering a valuable tool to save human lives and to speed up the search and rescue process. The introduction of robotic tools in the world of search and rescue is not straightforward, due to the fact that the search and rescue context is extremely technology-unfriendly, meaning that very robust solutions, which can be deployed extremely quickly, are required. Multiple research projects across the world are tackling this problem and in this book, a special focus is placed on showcasing the results of the European Union ICARUS project on this subject. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, so that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them in order to learn to use the ICARUS system. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 285417. The publishing of this book was funded by the EC FP7 Post-Grant Open Access Pilot programme.




Assessment of Options for Extending the Life of the Hubble Space Telescope


Book Description

The Hubble Space Telescope (HST) has operated continuously since 1990. During that time, four space shuttle-based service missions were launched, three of which added major observational capabilities. A fifth â€" SM-4 â€" was intended to replace key telescope systems and install two new instruments. The loss of the space shuttle Columbia, however, resulted in a decision by NASA not to pursue the SM-4 mission leading to a likely end of Hubble's useful life in 2007-2008. This situation resulted in an unprecedented outcry from scientists and the public. As a result, NASA began to explore and develop a robotic servicing mission; and Congress directed NASA to request a study from the National Research Council (NRC) of the robotic and shuttle servicing options for extending the life of Hubble. This report presents an assessment of those two options. It provides an examination of the contributions made by Hubble and those likely as the result of a servicing mission, and a comparative analysis of the potential risk of the two options for servicing Hubble. The study concludes that the Shuttle option would be the most effective one for prolonging Hubble's productive life.







Adaptive Mobile Robotics


Book Description

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.




Robotics and Automation Handbook


Book Description

As the capability and utility of robots has increased dramatically with new technology, robotic systems can perform tasks that are physically dangerous for humans, repetitive in nature, or require increased accuracy, precision, and sterile conditions to radically minimize human error. The Robotics and Automation Handbook addresses the major aspects of designing, fabricating, and enabling robotic systems and their various applications. It presents kinetic and dynamic methods for analyzing robotic systems, considering factors such as force and torque. From these analyses, the book develops several controls approaches, including servo actuation, hybrid control, and trajectory planning. Design aspects include determining specifications for a robot, determining its configuration, and utilizing sensors and actuators. The featured applications focus on how the specific difficulties are overcome in the development of the robotic system. With the ability to increase human safety and precision in applications ranging from handling hazardous materials and exploring extreme environments to manufacturing and medicine, the uses for robots are growing steadily. The Robotics and Automation Handbook provides a solid foundation for engineers and scientists interested in designing, fabricating, or utilizing robotic systems.




Vehicle-Manipulator Systems


Book Description

Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas. The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain globally valid representations of the dynamic equations of vehicle-manipulator systems. The specific characteristics of several different types of vehicle-manipulator systems are included and the various application areas of these systems are discussed in detail. For underwater robots buoyancy and gravity, drag forces, added mass properties, and ocean currents are considered. For space robotics the effects of free fall environments and the strong dynamic coupling between the spacecraft and the manipulator are discussed. For wheeled robots wheel kinematics and non-holonomic motion is treated, and finally the inertial forces are included for robots mounted on a forced moving base. Modeling and Control of Vehicle-manipulator Systems will be of interest to researchers and engineers studying and working on many applications of robotics: underwater, space, personal assistance, and mobile manipulation in general, all of which have similarities in the equations required for modeling and control.




Anti-personnel Landmine Detection for Humanitarian Demining


Book Description

Anti-personnel Landmine Detection for Humanitarian Demining reports on state-of-the-art technologies developed during a Japanese National Research Project (2002–2007). The conventional method of landmine detection is using metal detectors to sense the metal in mines, but often other metal fragments in minefields camouflage landmines and hinder progress using this form of demining. The challenge is to develop detection systems that can discriminate between AP landmines and random metal fragments. The JST adopted research proposals and the results are reported here. This book concentrates on aspects of three approaches to AP mine detection: enhancing and confirming the results of metal-detection scans using GPR; using robot vehicles and manipulators to operate within minefields remotely; and methods of sensing the explosives within mines. Results are presented in the fields of GPR, nuclear quadrupole resonance, neutron thermal analysis and biosensors. The integration of these methods for workable robot operation is demonstrated. The project was carried out in conjunction with mine action centers in Croatia, Cambodia and Afghanistan. Evaluation data from field trials are also given.




Mobile Robot Localization and Map Building


Book Description

During the last decade, many researchers have dedicated their efforts to constructing revolutionary machines and to providing them with forms of artificial intelligence to perform some of the most hazardous, risky or monotonous tasks historically assigned to human beings. Among those machines, mobile robots are undoubtedly at the cutting edge of current research directions. A rough classification of mobile robots can be considered: on the one hand, mobile robots oriented to human-made indoor environments; on the other hand, mobile robots oriented to unstructured outdoor environments, which could include flying oriented robots, space-oriented robots and underwater robots. The most common motion mechanism for surface mobile robots is the wheel-based mechanism, adapted both to flat surfaces, found in human-made environments, and to rough terrain, found in outdoor environments. However, some researchers have reported successful developments with leg-based mobile robots capable of climbing up stairs, although they require further investigation. The research work presented here focuses on wheel-based mobile robots that navigate in human-made indoor environments. The main problems described throughout this book are: Representation and integration of uncertain geometric information by means of the Symmetries and Perturbations Model (SPmodel). This model combines the use of probability theory to represent the imprecision in the location of a geometric element, and the theory of symmetries to represent the partiality due to characteristics of each type of geometric element. A solution to the first location problem, that is, the computation of an estimation for the mobile robot location when the vehicle is completely lost in the environment. The problem is formulated as a search in an interpretation tree using efficient matching algorithms and geometric constraints to reduce the size of the solution space. The book proposes a new probabilistic framework adapted to the problem of simultaneous localization and map building for mobile robots: the Symmetries and Perturbations Map (SPmap). This framework has been experimentally validated by a complete experiment which profited from ground-truth to accurately validate the precision and the appropriateness of the approach. The book emphasizes the generality of the solutions proposed to the different problems and their independence with respect to the exteroceptive sensors mounted on the mobile robot. Theoretical results are complemented by real experiments, where the use of multisensor-based approaches is highlighted.