Indifference Pricing


Book Description

This is the first book about the emerging field of utility indifference pricing for valuing derivatives in incomplete markets. René Carmona brings together a who's who of leading experts in the field to provide the definitive introduction for students, scholars, and researchers. Until recently, financial mathematicians and engineers developed pricing and hedging procedures that assumed complete markets. But markets are generally incomplete, and it may be impossible to hedge against all sources of randomness. Indifference Pricing offers cutting-edge procedures developed under more realistic market assumptions. The book begins by introducing the concept of indifference pricing in the simplest possible models of discrete time and finite state spaces where duality theory can be exploited readily. It moves into a more technical discussion of utility indifference pricing for diffusion models, and then addresses problems of optimal design of derivatives by extending the indifference pricing paradigm beyond the realm of utility functions into the realm of dynamic risk measures. Focus then turns to the applications, including portfolio optimization, the pricing of defaultable securities, and weather and commodity derivatives. The book features original mathematical results and an extensive bibliography and indexes. In addition to the editor, the contributors are Pauline Barrieu, Tomasz R. Bielecki, Nicole El Karoui, Robert J. Elliott, Said Hamadène, Vicky Henderson, David Hobson, Aytac Ilhan, Monique Jeanblanc, Mattias Jonsson, Anis Matoussi, Marek Musiela, Ronnie Sircar, John van der Hoek, and Thaleia Zariphopoulou. The first book on utility indifference pricing Explains the fundamentals of indifference pricing, from simple models to the most technical ones Goes beyond utility functions to analyze optimal risk transfer and the theory of dynamic risk measures Covers non-Markovian and partially observed models and applications to portfolio optimization, defaultable securities, static and quadratic hedging, weather derivatives, and commodities Includes extensive bibliography and indexes Provides essential reading for PhD students, researchers, and professionals







Novel Methods in Computational Finance


Book Description

This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.




Pricing the Planet's Future


Book Description

Today, the judge, the citizen, the politician, and the entrepreneur are concerned with the sustainability of our development.




Asset Pricing


Book Description

Winner of the prestigious Paul A. Samuelson Award for scholarly writing on lifelong financial security, John Cochrane's Asset Pricing now appears in a revised edition that unifies and brings the science of asset pricing up to date for advanced students and professionals. Cochrane traces the pricing of all assets back to a single idea—price equals expected discounted payoff—that captures the macro-economic risks underlying each security's value. By using a single, stochastic discount factor rather than a separate set of tricks for each asset class, Cochrane builds a unified account of modern asset pricing. He presents applications to stocks, bonds, and options. Each model—consumption based, CAPM, multifactor, term structure, and option pricing—is derived as a different specification of the discounted factor. The discount factor framework also leads to a state-space geometry for mean-variance frontiers and asset pricing models. It puts payoffs in different states of nature on the axes rather than mean and variance of return, leading to a new and conveniently linear geometrical representation of asset pricing ideas. Cochrane approaches empirical work with the Generalized Method of Moments, which studies sample average prices and discounted payoffs to determine whether price does equal expected discounted payoff. He translates between the discount factor, GMM, and state-space language and the beta, mean-variance, and regression language common in empirical work and earlier theory. The book also includes a review of recent empirical work on return predictability, value and other puzzles in the cross section, and equity premium puzzles and their resolution. Written to be a summary for academics and professionals as well as a textbook, this book condenses and advances recent scholarship in financial economics.




Hedging Derivatives


Book Description

Valuation and hedging of financial derivatives are intrinsically linked concepts. Choosing appropriate hedging techniques depends on both the type of derivative and assumptions placed on the underlying stochastic process. This volume provides a systematic treatment of hedging in incomplete markets. Mean-variance hedging under the risk-neutral measure is applied in the framework of exponential L(r)vy processes and for derivatives written on defaultable assets. It is discussed how to complete markets based upon stochastic volatility models via trading in both stocks and vanilla options. Exponential utility indifference pricing is explored via a duality with entropy minimization. Backward stochastic differential equations offer an alternative approach and are moreover applied to study markets with trading constraints including basis risk. A range of optimal martingale measures are discussed including the entropy, Esscher and minimal martingale measures. Quasi-symmetry properties of stochastic processes are deployed in the semi-static hedging of barrier options. This book is directed towards both graduate students and researchers in mathematical finance, and will also provide an orientation to applied mathematicians, financial economists and practitioners wishing to explore recent progress in this field."




Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)


Book Description

This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.




Mathematical Finance


Book Description

Taking continuous-time stochastic processes allowing for jumps as its starting and focal point, this book provides an accessible introduction to the stochastic calculus and control of semimartingales and explains the basic concepts of Mathematical Finance such as arbitrage theory, hedging, valuation principles, portfolio choice, and term structure modelling. It bridges thegap between introductory texts and the advanced literature in the field. Most textbooks on the subject are limited to diffusion-type models which cannot easily account for sudden price movements. Such abrupt changes, however, can often be observed in real markets. At the same time, purely discontinuous processes lead to a much wider variety of flexible and tractable models. This explains why processes with jumps have become an established tool in the statistics and mathematics of finance. Graduate students, researchers as well as practitioners will benefit from this monograph.




Intermediate Financial Theory


Book Description

The second edition of this authoritative textbook continues the tradition of providing clear and concise descriptions of the new and classic concepts in financial theory. The authors keep the theory accessible by requiring very little mathematical background. First edition published by Prentice-Hall in 2001- ISBN 0130174467. The second edition includes new structure emphasizing the distinction between the equilibrium and the arbitrage perspectives on valuation and pricing, as well as a new chapter on asset management for the long term investor. "This book does admirably what it sets out to do - provide a bridge between MBA-level finance texts and PhD-level texts.... many books claim to require little prior mathematical training, but this one actually does so. This book may be a good one for Ph.D students outside finance who need some basic training in financial theory or for those looking for a more user-friendly introduction to advanced theory. The exercises are very good." --Ian Gow, Student, Graduate School of Business, Stanford University Completely updated edition of classic textbook that fills a gap between MBA level texts and PHD level texts Focuses on clear explanations of key concepts and requires limited mathematical prerequisites Updates includes new structure emphasizing the distinction between the equilibrium and the arbitrage perspectives on valuation and pricing, as well as a new chapter on asset management for the long term investor




Advances in Mathematical Finance


Book Description

This self-contained volume brings together a collection of chapters by some of the most distinguished researchers and practitioners in the field of mathematical finance and financial engineering. Presenting state-of-the-art developments in theory and practice, the book has real-world applications to fixed income models, credit risk models, CDO pricing, tax rebates, tax arbitrage, and tax equilibrium. It is a valuable resource for graduate students, researchers, and practitioners in mathematical finance and financial engineering.