Vacation Queueing Models


Book Description

This book discusses systematically the many variations of vacation policy. The book discusses a variety of typical vacation model applications. The presentation style is unique compared with the books published in the same field – a "theorem and proof" format is used. Also, this is the first time G1/M/1 multi-server vacation models, both continuous and discrete, and the optimization and control issues have been presented in book form.




Stochastic Models in Queueing Theory


Book Description

This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation




Queueing Analysis


Book Description




Queueing Theory for Telecommunications


Book Description

Queueing theory applications can be discovered in many walks of life including; transportation, manufacturing, telecommunications, computer systems and more. However, the most prevalent applications of queueing theory are in the telecommunications field. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System focuses on discrete time modeling and illustrates that most queueing systems encountered in real life can be set up as a Markov chain. This feature is very unique because the models are set in such a way that matrix-analytic methods are used to analyze them. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System is the most relevant book available on queueing models designed for applications to telecommunications. This book presents clear concise theories behind how to model and analyze key single node queues in discrete time using special tools that were presented in the second chapter. The text also delves into the types of single node queues that are very frequently encountered in telecommunication systems modeling, and provides simple methods for analyzing them. Where appropriate, alternative analysis methods are also presented. This book is for advanced-level students and researchers concentrating on engineering, computer science and mathematics as a secondary text or reference book. Professionals who work in the related industries of telecommunications, industrial engineering and communications engineering will find this book useful as well.




Retrial Queues


Book Description

Based on the careful analysis of several hundred publications, this book uniformly describes basic methods of analysis and critical results of the theory of retrial queues. Chapters discuss: analysis of single-server retrial queues, including stationary and transient distribution of the number in the system, busy period, waiting time process, limit theorems, stochastic inequalities, traffic measurement multiserver retrial queues - ergodicity, explicit formulas, algorithmic solutions, limit theorems, approximations advanced single-server and multiserver retrial queues - models with priority subscribers, non-ersistent subscribers, finite source queues Lecturers, researchers, and students in probability, statistics, operations research, telecommunications, and computer systems modeling analysis will find Retrial Queues to be an invaluable resource.




Queueing Theory 2


Book Description

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. This second volume includes eight chapters written by experts wellknown in their areas. The book conducts a stability analysis of certain types of multiserver regenerative queueing systems; a transient evaluation of Markovian queueing systems, focusing on closed-form distributions and numerical techniques; analysis of queueing models in service sectors using analytical and simulation approaches; plus an investigation of probability distributions in queueing models and their use in economics, industry, demography and environmental studies. This book also considers techniques for the control of information in queueing systems and their impact on strategic customer behavior, social welfare and the revenue of monopolists. In addition, applications of maximum entropy methods of inference for the analysis of a stable M/G/1 queue with heavy tails, and inventory models with positive service time - including perishable items and stock supplied using various algorithmic control policies ((s; S); (r;Q), etc.).




Mathematical Modeling and Computation of Real-Time Problems


Book Description

This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems. The book covers a broad scope in the areas of statistical science, probability, stochastic processes, fluid dynamics, supply chain, optimization, and applications. It discusses advanced topics and the latest research findings, uses an interdisciplinary approach for real-time systems, offers a platform for integrated research, and identifies the gaps in the field for further research. The book is for researchers, students, and teachers that share a goal of learning advanced topics and the latest research in mathematical modeling.




Queueing Analysis: Finite systems


Book Description

Queueing models have been used very effectively for the performance of evaluation of many computer and communication systems. As a continuation of Volume 1: Vacation and Priority Systems , which dealt with M/G/1-type systems, this volume explores systems with a finite population (M/G/1/N) and those with a finite capacity (M/G/1/K). The methods of imbedded Markov chains and semi-Markov processes, the delay cycle analysis, and the method of supplementary variables are extensively used. In order to maximise the reader's understanding, multiple approaches have been employed, including the derivation of the results by several techniques. This elaborate presentation of new and important research results applicable to emerging technologies is aimed at engineers and mathematicians alike, with a basic understanding or a comprehensive knowledge of queueing systems. It will be of particular interest to researchers and graduate students of applied probability, operations research, computer science and electrical engineering and to researchers and engineers of performance of computers and communication networks. Volume 3: Discrete Time Systems will follow this volume to complete the set.




Introduction to Matrix Analytic Methods in Stochastic Modeling


Book Description

Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.




Introduction to Queueing Theory


Book Description

The book is not intended to be characterized as either 'theoretical' or 'applied'. The emphasis of the book is on understanding the interplay of mathematical and heuristic reasoning that underlies queueing theory and its applications, with the following two objectives: 1) To give the student sufficient understanding of the theory so that he will be able to apply it in the practice of operations research, and 2) To give the student the background required to read the literature and embark on research.