fib Model Code for Concrete Structures 2010


Book Description

The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.




Bond of Reinforcement in Concrete


Book Description

"In 1993, the CEB Commission 2 Material and Behavior Modelling established the Task Group 2.5 Bond Models. It's terms of reference were ... to write a state-of-art report concerning bond of reinforcement in concrete and later recommend how the knowledge could be applied in practice (Model Code like text proposal)... {This work} covers the first part ... the state-of-art report."--Pref.







Bond and anchorage of embedded reinforcement: Background to the fib Model Code for Concrete Structures 2010


Book Description

As part of the preparation for the fib Model Code for Concrete Structures 2010, task group 4.5 Bond Models undertook a major review of rules for bond and anchorage of reinforcement in the CEB-FIP Model Code 1990. This bulletin presents the outcome of that review, describes the rationale for the revisions and presents the evidence on which the revisions are based. The principle changes in MC2010 include raising the limit on concrete strength that may be used when determining bond resistance to 110MPa, introduction of a coefficient η4 to cater for different reinforcement Classes, and coverage of new construction materials including epoxy coated and headed bars. The format of design rules has been changed to permit more rational treatment of confinement from concrete cover and transverse reinforcement, the contribution of end hooks and bends for tension bars, and end bearing to compression laps. New guidance is provided covering a range of construction techniques and service environments and the influence of long term degradation. Analyses of various aspects of detailing on performance of laps and anchorages have resulted in discontinuation of the ‘proportion lapped’ factor α6, alterations to requirements of transverse reinforcement at laps, and have resolved inconsistencies in provisions for bundled bars between major national codes. Apparent inconsistencies in existing rules for lapped joints and anchorages and between the local bond/slip model and design rules are also resolved, thus allowing integration of application rules and modelling. Finally, the basis for an attempt to introduce simple detailing rules for laps and anchorages is described.




Expressions for Bond Stress of a Tension Splice in Steel Reinforced Concrete


Book Description

The aim of the research is to develop expressions for the bond stress at a tension splice in reinforced concrete. Many experiments have been conducted inorder to ascertain the relationship between appropriate variables and develop an expression to evaluate the bond stress. The scope of this research is to use existing experimental data to establish a relation and develop an expression. Before the preprocessing begins, the data are organized into different categories such as bottom, top and side bars, and bars with transverse reinforcement. The existing experimental data is evaluated for statistical validation. It is then subjected to individual and relational variance tests to ascertain the variation of individual variables in comparison with each and every variable. It is also tested for significance of presence. This preprocessed data is subjected to correlation tests. Proper variables are then selected whose 'contributions' are significant to the endogenous variable which in this case is the bond stress at splice length normalized with respect to the square root of the characteristic compressive strength of the concrete. Once, the desired variables are established, a linear model is built and the coefficients of the desired variables are evaluated. The linear model is then tested for errors. Since significant error is to be expected due to the omission of number of variables, the equation is discretized over a discrete interval of a selected parameter. Thus, the error is minimized and a fairly accurate expressions are developed.







Tests of Bond Between Concrete and Steel


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.




Transfer, Development, and Splice Length for Strand/reinforcement in High-strength Concrete


Book Description

"This report documents research performed to develop recommended revisions to the AASHTO LRFD Bridge Design Specifications to extend the applicability of the transfer, development, and splice length provisions for prestressed and non-prestressed concrete members to concrete strengths greater than 10 ksi. The report details the research performed and includes recommended revisions to the AASHTO LRFD Bridge Design Specifications. The material in this report will be of immediate interest to bridge designers."--Foreword.