Variation Principle in Informational Macrodynamics


Book Description

Information Macrodynamics (IMD) belong to an interdisciplinary science that represents a new theoretical and computer-based methodology for a system informational descriptionand improvement,including various activities in such areas as thinking, intelligent processes, communications, management, and other nonphysical subjects with their mutual interactions, informational superimposition, and theinformation transferredbetweeninteractions. The IMD is based on the implementation of a single concept by a unique mathematical principle and formalism, rather than on an artificial combination of many arbitrary, auxiliary concepts and/or postulates and different mathematical subjects, such as the game, automata, catastrophe, logical operations theories, etc. This concept is explored mathematically using classical mathematics as calculus of variation and the probability theory, which are potent enough, without needing to developnew,specifiedmathematical systemicmethods. The formal IMD model automatically includes the related results from other fields, such as linear, nonlinear, collective and chaotic dynamics, stability theory, theory of information, physical analogies of classical and quantum mechanics, irreversible thermodynamics, andkinetics. The main IMD goal is to reveal the information regularities, mathematically expressed by the considered variation principle (VP), as a mathematical tool to extractthe regularities and define the model, whichdescribes theregularities. The IMD regularities and mechanisms are the results of the analytical solutions and are not retained by logical argumentation, rational introduction, and a reasonable discussion. The IMD's information computer modeling formalism includes a human being (as an observer, carrier and producer ofinformation), with a restoration of the model during the objectobservations.




Theory of Information


Book Description

This unique volume presents a new approach OCo the general theory of information OCo to scientific understanding of information phenomena. Based on a thorough analysis of information processes in nature, technology, and society, as well as on the main directions in information theory, this theory synthesizes existing directions into a unified system. The book explains how this theory opens new kinds of possibilities for information technology, information sciences, computer science, knowledge engineering, psychology, linguistics, social sciences, and education. The book also gives a broad introduction to the main mathematically-based directions in information theory. The general theory of information provides a unified context for existing directions in information studies, making it possible to elaborate on a comprehensive definition of information; explain relations between information, data, and knowledge; and demonstrate how different mathematical models of information and information processes are related. Explanation of information essence and functioning is given, as well as answers to the following questions: how information is related to knowledge and data; how information is modeled by mathematical structures; how these models are used to better understand computers and the Internet, cognition and education, communication and computation. Sample Chapter(s). Chapter 1: Introduction (354 KB). Contents: General Theory of Information; Statistical Information Theory; Semantic Information Theory; Algorithm Information Theory; Pragmatic Information Theory; Dynamics of Information. Readership: Professionals in information processing, and general readers interested in information and information processes.




Information Systems Analysis and Modeling


Book Description

Informational Macrodynamics (IMD) presents the unified information systemic approach with common information language for modeling, analysis and optimization of a variety of interactive processes, such as physical, biological, economical, social, and informational, including human activities. Comparing it with thermodynamics, which deals with transformation energy and represents a theoretical foundation of physical technology, IMD deals with transformation information, and can be considered a theoretical foundation of Information Computer Technology (ICT). ICT includes but is not limited to applied computer science, computer information systems, computer and data communications, software engineering, and artificial intelligence. In ICT, information flows from different data sources, and interacts to create new information products. The information flows may interact physically or via their virtual connections, initiating an information dynamic process that can be distributed in space. As in physics, a problem is understanding general regularities of the information processes in terms of information law, for the engineering and technological design, control, optimization, and development of computer technology, operations, manipulations, and management of real information objects. Information Systems Analysis and Modeling: An Informational Macrodynamics Approach belongs to an interdisciplinary science that represents the new theoretical and computer-based methodology for system informational description and improvement, including various activities in such interdisciplinary areas as thinking, intelligent processes, management, and other nonphysical subjects with their mutual interactions, informational superimpositions, and the information transferred between interactions. Information Systems Analysis and Modeling: An Informational Macrodynamics Approach can be used as a textbook or secondary text in courses on computer science, engineering, business, management, education, and psychology and as a reference for research and industry.




Progress in Evolution Equations


Book Description

This book presents new research from around the world on the theory and methods of linear and non-linear evolution equations as well as their further applications. It includes the asymptotic behaviour of solutions to evolution equations. Other non-linear differential equations and applications to natural sciences are also included.




Project Management


Book Description

This is a revised edition of David Cleland's highly-regarded guide to the strategic management of projects teams as a key initiative in the management of product, service, and organisational process change in an industrial enterprise.




Dictionary of Scientific Principles


Book Description

Dictionary of Scientific Principles presents a unique and timeless collection of (almost) all known rules or laws commonly called principles, identified throughout the history of scientific development, their definition, and use. Exploring a broad range of disciplines, the book first lists more than 2,000 principles organized in a standard alphabetical order, then provides a list of subject headings for which related principles are identified. A staple addition to every library, the dictionary will also be of interest to scientists and general readers.




Mathematical Reviews


Book Description







Micro-, Meso- and Macro-Dynamics of the Brain


Book Description

This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.