Vegetable Fiber Composites and their Technological Applications


Book Description

This book explores vegetable fiber composite as an eco-friendly, biodegradable, and sustainable material that has many potential industrial applications. The use of vegetable fiber composite supports the sustainable development goals (SDGs) to utilize more sustainable and greener composite materials, which are also easy to handle and locally easily available with economical production costs. This book presents various types of vegetable fiber composite and its processing methods and treatments to obtain desirable properties for certain applications. The book caters to researchers and students who are working in the field of bio-composites and green materials.




Vegetable Fiber Composites and Their Technological Applications


Book Description

This book explores vegetable fiber composite as an eco-friendly, biodegradable, and sustainable material that has many potential industrial applications. The use of vegetable fiber composite supports the sustainable development goals (SDGs) to utilize more sustainable and greener composite materials, which are also easy to handle and locally easily available with economical production costs. This book presents various types of vegetable fiber composite and its processing methods and treatments to obtain desirable properties for certain applications. The book caters to researchers and students who are working in the field of bio-composites and green materials.




Synthetic and Mineral Fibers, Their Composites and Applications


Book Description

Synthetic and Mineral Fibers, Their Composites and Applications reviews recent advances and technological developments in this important research field. The book provides an up-to-date record of significant research findings and observations along with an update on current and future potential applications. The book provides vital information on recent advancements, modern processing technologies, manufacturing, and applications and summarizes lifecycle and performance parameters for these types of composites. This book will be a valuable reference resource for academic and industrial researchers and materials scientists and engineers working in the development of polymer composite materials reinforced with synthetic and mineral fibers for applications in aerospace, medical, defense, automotive and construction sectors. - Covers both synthetic and mineral fibers, their composites, and applications - Highlights recent advances in mineral fiber- reinforced polymer composites, modern processing methods, and functionalization - Provides updates on hybrid (combination of both synthetic and mineral fiber) composite technologies - Features applications in aerospace, medical, defense and the construction industries




Natural Fiber Composites


Book Description

This book focuses on the key areas and issues related to natural fibers and their reinforced polymer composites. It begins with an introduction and classification of natural fibers and their different extraction methods, followed by characterization techniques. Further, this book gives solutions to improved adhesion between natural fibers and different polymer matrices via different chemical, physical, and biological treatment methods. Fabrication procedures and characterization techniques for development and testing of composites, including processing, development, and characterization, have been included as well. Applications of these composite materials for food packaging and structural and semi-structural applications are also explained. FEATURES Describes the extraction process of natural fibers with comparisons Covers the fundamental concepts for the characterization of natural fiber composites Includes a comparative study of different polymer matrices Provides insight about various fabrication methods Discusses diverse applications of these novel materials and the scope for commercialization and entrepreneurship This book is aimed at graduate students and researchers in materials, polymers, composites and characterization, textile engineering, chemical, civil, and mechanical engineering.




Multiscale Textile Preforms and Structures for Natural Fiber Composites


Book Description

Textile reinforcement forms (preforms) play an important role in determining the properties of the final composite and product. The preform formation process provides precise control of the fiber architecture and orientation using a suitable textile manufacturing technique. While the techniques employed for preparing glass and carbon preforms are well-known, there is still a gap in understanding on how to prepare natural preforms for composite reinforcements. Multiscale Textile Preforms and Structures for Natural Fiber Composites will bridge this gap by presenting unified knowledge on the relevant preform preparation techniques and resulting fiber architectures. Emphasis is on the structural parameters of each preform and their effect on the final composite properties. This book assembles information and knowledge on natural fiber reinforcement forms, including conventional forms, such as spun yarn, woven, knitted, nonwoven, braided, and comingled. These are illustrated and classified into one-, two-, and three-dimensional reinforcements. This book also includes information on nonconventional preform formation techniques such as unidirectional tapes, pre-impregnated preforms, spread tows, and tailored fiber placement. - Covers all relevant textile processing technology for natural fiber preforms - Provides academic researchers with a better understanding of recent practices in preparing textile reinforcements for natural fiber composites - Helps practitioners determine how to use natural fiber reinforcements in producing new sustainable and innovative composites




Sustainable Natural Fiber Composites


Book Description

The book covers such diverse topics as cellulose fibers in cement paste and concrete, biodegradable materials for dental applications, coconut and pineapple fiber composites, biodegradable plastic composites, durability against fatigue and moisture, physical and mechanical characterization of fiber composites, improving the hydrophobic nature of fiber composites, and hybrid natural fiber composites. Keywords: Fiber Reinforced Composites, Biodegradable Composites, Polymethyl Methacrylate, Cellulose Fibers, Coconut Fibers, Biocomposites, Resol-Vegetable Fibers, Pineapple Natural Fiber Composite, Dental Applications, Cement Paste, Concrete, Thermoplasticity, Fatigue, Moisture, Thermal Conductivity.




Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites


Book Description

This book provides a general overview of the importance of fibre-matrix interfacial bonding characteristics in natural fibre-based composites to obtain optimal material properties for a specific application. Composites materials are prepared by combining fibres and polymers to achieve superior materials properties than those of the individual components. Composite materials are used to produce lightweight components with increased stiffness and strength; their properties can also be tailored for any specific applications. The glass fibre reinforced composites dominate 95% of the thermoplastic and thermoset-based composites. However, the natural fibre reinforced composites can give competition to the glass fibres due to their advantages such as biodegradability, low density, low cost, and good mechanical properties. This book looks into biocomposites and its important aspect of optimization of materials’ performance by fine-tuning the fibre-matrix bonding characteristics. The chapters in the book look at different plant fibres such as kenaf, pineapple leaf, jute, date palm, luffa, cotton, hemp, wood, bamboo, flax, and straw and the different approaches to enhance the fibre-matrix interfacial bonding through physical and/or chemical treatment methods. It demonstrates that the nature of fibre-matrix bonding has a significant effect on the properties such as tensile, flexural, impact, inter-laminar shear strength, moisture absorption, thickness swelling, thermal, chemical, damping, creep, and fatigue. Its content appeals to academics, students, researcher, and scientist who are working in the field to produce biodegradable and recyclable materials in the composite industry.




Cellulose Fibre Reinforced Composites


Book Description

Cellulose Fibre Reinforced Composites: Interface Engineering, Processing and Performance provides an up-to-date review of current research in cellulose fiber reinforced polymer composites. Key emphasis is placed on interface engineering, modern technologies needed for processing and materials performance in industrial applications. Novel techniques for interfacial adhesion, characterization and assessment of cellulose fiber reinforced composites are also discussed, along with current trends and future directions. With contributions from leading researchers in industry, academic, government and private research institutions from across the globe, the book will be an essential reference resource for all those working in the field of cellulose fibers and their composites. - Reviews advances in recent research towards enhancing the mechanical properties of cellulose fiber composites - Discusses interface engineering and modern technologies needed for processing cellulose fiber composites - Includes case studies of problems with interfaces and practical industrial applications







Polyester-Based Biocomposites


Book Description

Polyester-Based Biocomposites highlights the performance of polyester-based biocomposites reinforced with various natural fibres extracted from leaf, stem, fruit bunch, grass and wood material. It also addresses the characteristics of polyester-based biocomposites reinforced with rice husk fillers and various nanoparticles. This book explores the widespread applications of fibre-reinforced polymer composites in the aerospace sector, automotive parts, construction and building materials, sports equipment and household appliances. Investigating the advantages of natural fibres, such as superior damping characteristics, low density, biodegradability, abundant availability at low cost and non-abrasive to tooling, this book discusses what makes them a cost-effective alternative reinforcement material for composites in certain applications. This book serves as a useful reference for researchers, graduate students and engineers in the field of polymer composites.