Vibrations of Hollow Elastic Bodies


Book Description

This book focuses on the justification and refinement of highly diverse approximate dynamic models for engineering structures arising in modern technology, including high-tech domains involving nano- and meta-materials. It proposes a classification for vibration spectra over a broad frequency domain and evaluates the range of validity of various existing 2D theories for thin-walled shells by comparing them with 3D benchmark solutions. The dynamic equations in 3D elasticity are applied to the analysis of harmonic vibrations in hollow bodies with canonical shapes. New exact homogeneous and inhomogeneous solutions are derived for cylinders, spheres and cones (including spherical and conical layers), as well as for plates of variable thickness. The book includes a wealth of numerical examples, as well as refined versions of 2D dynamic formulations. Boundary value problems for hollow bodies are also addressed.




Handbook On Timoshenko-ehrenfest Beam And Uflyand- Mindlin Plate Theories


Book Description

The refined theory of beams, which takes into account both rotary inertia and shear deformation, was developed jointly by Timoshenko and Ehrenfest in the years 1911-1912. In over a century since the theory was first articulated, tens of thousands of studies have been performed utilizing this theory in various contexts. Likewise, the generalization of the Timoshenko-Ehrenfest beam theory to plates was given by Uflyand and Mindlin in the years 1948-1951.The importance of these theories stems from the fact that beams and plates are indispensable, and are often occurring elements of every civil, mechanical, ocean, and aerospace structure.Despite a long history and many papers, there is not a single book that summarizes these two celebrated theories. This book is dedicated to closing the existing gap within the literature. It also deals extensively with several controversial topics, namely those of priority, the so-called 'second spectrum' shear coefficient, and other issues, and shows vividly that the above beam and plate theories are unnecessarily overcomplicated.In the spirit of Einstein's dictum, 'Everything should be made as simple as possible but not simpler,' this book works to clarify both the Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories, and seeks to articulate everything in the simplest possible language, including their numerous applications.This book is addressed to graduate students, practicing engineers, researchers in their early career, and active scientists who may want to have a different look at the above theories, as well as readers at all levels of their academic or scientific career who want to know the history of the subject. The Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories are the key reference works in the study of stocky beams and thick plates that should be given their due and remain important for generations to come, since classical Bernoulli-Euler beam and Kirchhoff-Love theories are applicable for slender beams and thin plates, respectively.Related Link(s)




Asymptotic Analysis of Spatial Problems in Elasticity


Book Description

The book presents homogeneous solutions in static and dynamical problems of anisotropic theory of elasticity, which are constructed for a hollow cylinder. It also offers an asymptotic process for finding frequencies of natural vibrations of a hollow cylinder, and establishes a qualitative study of several applied theories of the boundaries of applicability. Further the authors develop a general theory for a transversally isotropic spherical shell, which includes methods for constructing inhomogeneous and homogeneous solutions that allow the characteristic features of the stress–strain state of an anisotropic spherical shell to be revealed. Lastly, the book introduces an asymptotic method for integrating the equations of anisotropic theory of elasticity in variable thickness plates and shells. Based on the results of the author and researchers at Baku State University and the Institute of Mathematics and Mechanics, ANAS, the book is intended for specialists in the field of theory of elasticity, theory of plates and shells, and applied mathematics.




New Achievements in Continuum Mechanics and Thermodynamics


Book Description

This book presents a liber amicorum dedicated to Wolfgang H. Müller, and highlights recent advances in Prof. Müller’s major fields of research: continuum mechanics, generalized mechanics, thermodynamics, mechanochemistry, and geomechanics. Over 50 of Prof. Müller’s friends and colleagues contributed to this book, which commemorates his 60th birthday and was published in recognition of his outstanding contributions.




Vibrations of Shells and Rods


Book Description

Intended for engineers who deal with vibrations of rods and shells in their everyday practice but who also wish to understand the subject from the mathematical point-of-view, the results contained here concerning high-frequency vibrations may be new to many. The book serves equally well as an advanced textbook, while remaining of interest to mathematicians who seek applications of the variational and asymptotic methods in elasticity and piezoelectricity. Only a minimum knowledge in advanced calculus and continuum mechanics is assumed on the part of the reader.







Vibration of Continuous Systems


Book Description

A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author—a noted expert in the field—reviews all possible types of continuous structural members and systems including strings, shafts, beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solutions, approximate analytical solutions, and numerical solutions. All the methods are presented in clear and simple terms and the second edition offers a more detailed explanation of the fundamentals and basic concepts. Vibration of Continuous Systems revised second edition: Contains new chapters on Vibration of three-dimensional solid bodies; Vibration of composite structures; and Numerical solution using the finite element method Reviews the fundamental concepts in clear and concise language Includes newly formatted content that is streamlined for effectiveness Offers many new illustrative examples and problems Presents answers to selected problems Written for professors, students of mechanics of vibration courses, and researchers, the revised second edition of Vibration of Continuous Systems offers an authoritative guide filled with illustrative examples of the theory, computational details, and applications of vibration of continuous systems.




Vibration Problems ICOVP 2011


Book Description

This volume presents the Proceedings of the 10th International Conference on Vibration Problems, 2011, Prague, Czech Republic. ICOVP 2011 brings together again scientists from different backgrounds who are actively working on vibration-related problems of engineering both in theoretical and applied fields, thus facilitating a lively exchange of ideas, methods and results between the many different research areas. The aim is that reciprocal intellectual fertilization will take place and ensure a broad interdisciplinary research field. The topics, indeed, cover a wide variety of vibration-related subjects, from wave problems in solid mechanics to vibration problems related to biomechanics. The first ICOVP conference was held in 1990 at A.C. College, Jalpaiguri, India, under the co-chairmanship of Professor M.M. Banerjee and Professor P. Biswas. Since then it has been held every 2 years at various venues across the World.