Mechanochemistry in Nanoscience and Minerals Engineering


Book Description

Mechanochemistry as a branch of solid state chemistry enquires into processes which proceed in solids due to the application of mechanical energy. This provides a thorough, up to date overview of mechanochemistry of solids and minerals. Applications of mechanochemistry in nanoscience with special impact on nanogeoscience are described. Selected advanced identification methods, most frequently applied in nanoscience, are described as well as the advantage of mechanochemical approach in minerals engineering. Examples of industrial applications are given. Mechanochemical technology is being applied in many industrial fields: powder metallurgy (synthesis of nanometals, alloys and nanocompounds), building industry (activation of cements), chemical industry (solid waste treatment, catalyst synthesis, coal ashes utilization), minerals engineering (ore enrichment, enhancement of processes of extractive metallurgy), agriculture industry (solubility increase of fertilizers), and pharmaceutical industry (improvement of solubility and bioavailability of drugs). This reference serves as an introduction to newcomers to mechanochemistry, and encourages more experienced researchers to broaden their knowledge and discover novel applications in the field.




3rd International Symposium on Materials for Energy Storage and Conversion, September 10th-12th, 2018. Belgrade, Serbia


Book Description

Book Title: 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018, Program and the Book of Abstracts Conference Chair Jasmina Grbović Novaković, Vinča Institute, Belgrade, Serbia Conference Vice chair(s) Bojana Paskaš Mamula, Vinča Institute, Belgrade, Serbia Sandra Kurko, Vinča Institute, Belgrade, Serbia Nikola Novaković, Vinča Institute, Belgrade, Serbia Sanja Milošević Govedarović, Vinča Institute, Belgrade, Serbia International Advisory Board Dag Noreus, Stockholm University, Sweden Daniel Fruchart, Neel Institute, Grenoble, France Volodymyr Yartys, Institute for Energy Technology, Kjeller, Norway Amelia Montone, ENEA, Casaccia, Italy Patricia de Rango, Neel Institute, Grenoble, France Nataliya Skryabina, Perm State University, Russia Jose Ramon Ares Fernandez, Universidad Autónoma de Madrid, Spain Tayfur Öztürk, Middle East Technical University, Ankara, Turkey Kadri Aydınol Middle East Technical University, Ankara Ruth Imnadze, Tblisi State University, Tbilisi Saban Patat, Erciyes University, Kayseri Slavko Mentus, Faculty of Physical Chemistry, University of Belgrade, Serbia Šćepan Miljanić, Faculty of Physical Chemistry, University of Belgrade, Serbia Jasmina Grbovic-Novakovic, Vinca Institute of Nuclear Sciences, Belgrade Branimir Banov, IEES, Bulgarian Academy of Sciences, Sofia, Bulgaria Fermin Cuevas, ICMPE/CNRS, Paris, France Darius Milčius, LEI, Kaunas, Lithuania Junxian Zhang, ICMPE/CNRS, Paris, France Montse Casas-Cabanas, CIC Energigune, Álava, Spain 4 mESC-IS 2018, 3rd Int. Symposium on Materials for Energy Storage and Conversion, Belgrade, Serbia Program committee Tayfur Öztürk, Middle East Technical University, Ankara, Turkey Adam Revesz, Eotvos University, Budapest, Hungary Dan Lupu, INCDTIM, Cluj-Napoca, Romania Georgia Charalambopoulou, NCSR Demokritos, Greece Miran Gaberšček, National Institute of Chemistry, Ljubljana, Slovenia Nikola Biliškov, Ruđer Bošković Institute, Zagreb, Croatia Maja Buljan, Ruđer Bošković Institute, Zagreb, Croatia Branimir Banov, IEES, Bulgarian Academy of Sciences, Sofia, Bulgaria Tony Spassov, Faculty of Chemistry and Pharmacy, Sofia University, Bulgaria Perica Paunovic, FTM, Skopje, Macedonia Siniša Ignjatović, UNIBL, Banja Luka, Bosnia and Herzegovina Dragana Jugović, Inst Tech Sci SASA, Belgrade, Serbia Ivana Stojković Simatović, Faculty of Physical Chemistry, University of Belgrade, Serbia Igor Pašti, Faculty of Physical Chemistry, University of Belgrade, Serbia Nenad Ivanović, Vinča Institute, Belgrade, Serbia Ivana Radisavljević, Vinča Institute, Belgrade, Serbia Milica Marčeta Kaninski, Vinča Institute, Belgrade, Serbia Jasmina Grbović Novaković, Vinča Institute, Belgrade, Serbia Nikola Novaković, Vinča Institute, Belgrade, Serbia Sandra Kurko, Vinča Institute, Belgrade, Serbia Organizing committee Bojana Paskaš Mamula, Vinča Institute, Belgrade, Serbia Jelena Milićević, Vinča Institute, Belgrade, Serbia Tijana Pantić, Vinča Institute, Belgrade, Serbia Sanja Milošević Govedarović, Vinča Institute, Belgrade, Serbia Jana Radaković, Vinča Institute, Belgrade, Serbia Katarina Batalović, Vinča Institute, Belgrade, Serbia Igor Milanović, Ruđer Bošković Institute, Zagreb, Croatia,Vinča Institute, Belgrade, Serbia Andjelka Djukić, Vinča Institute, Belgrade, Serbia Bojana Kuzmanović, Vinča Institute, Belgrade, Serbia Mirjana Medić Ilić, Vinča Institute, Belgrade, Serbia Jelena Rmuš, Vinča Institute, Belgrade, Serbia Željko Mravik, Vinča Institute, Belgrade, Serbia Dear Colleagues, Welcome to 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018 and the town of Belgrade! The aim of the symphosium is to gather the researchers from Balkans, and all over Europe dealing with energy related materials to discuss on the important issues regarding energy storage, harvesting and conversion. First two very succesful symposia were organised in Turkey in 2015 and 2017 by professor Tayfur Öztürk, METU. The symposium, as before, will provide a forum for discussion in recent progress made in three major activity areas, namely batteries, solid state hydrogen storage and fuel cells. The symposium have a fair balance of plenary sessions covering cross-cutting issues and the state of the art reviews and parallel sessions with contributed papers and poster presentation. The papers from this conference will be published in International Journal of Hydrogen Energy Special Issue in order to disseminate the knowledge and to improve the visibility of symposiun Dr. Jasmina Grbović Novaković Dr. Nikola Novaković Dr. Sandra Kurko




Long-Term Durability of Polymeric Matrix Composites


Book Description

Long-Term Durability of Polymeric Matrix Composites presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.




Mechanochemistry in Materials


Book Description

With tremendous growth over the last five years, mechanochemistry has become one of the most important topics in current polymer science research. With a particular focus on polymers and soft materials, Mechanochemistry in Materials looks at the subject from the application of macroscopic forces to solid systems of macroscopic dimensions. The book has been divided according to length scale covering both experimental and theoretical considerations simultaneously. The first section of the book focuses on inspiration from nature, exploring and explaining multiple biological phenomena. The second section discusses molecular mechanochemistry, including the theoretical understanding of the transduction of mechanical force and its impact on covalent bonds cleavage and formation. The final section considers the implementation of these phenomena at the mesoscale and discusses the use of supramolecular/reversible aspects with similarities to biological systems. The book provides a unique comparison with natural systems and contains all the important achievements in the area from the last decade. Appealing to a broad range of materials scientists, working in industry and academia, this well-presented and comprehensive title will be essential reading for researchers.




Metal Phosphonate Chemistry


Book Description

Metal phosphonate chemistry is a highly interdisciplinary field, as it encompasses several other areas, such as materials chemistry, gas storage, pharmaceutics, corrosion control, classical chemical synthesis, X-ray crystallography, powder diffraction, etc. It has also acquired additional significance due to "Metal-Organic Frameworks", as evidenced by the hundreds of papers published each year. This book fills the gap in the literature by summarising, in a concise way, the latest developments in the field. Metal phosphonate chemistry has seen impressive growth in the last 15-20 years and there is a clear need to systematize and organize all this growth. This unique book accomplishes just that need - edited by two experts, it includes contributions from other experienced researchers and organises, categorises and presents in an attractive way the latest hot topics in metal phosphonate chemistry and related applications. With an extensive bibliography, it is a great reference for academic and industrial researchers as well as students working in the field and will act as a starting point for further exploration of the literature. It is also of great interest to scientists working in the broader area of metal-organic frameworks and their applications.




Triboluminescence


Book Description

This book expounds on progress made over the last 35 years in the theory, synthesis, and application of triboluminescence for creating smart structures. It presents in detail the research into utilization of the triboluminescent properties of certain crystals as new sensor systems for smart engineering structures, as well as triboluminescence-based sensor systems that have the potential to enable wireless, in-situ, real time and distributed (WIRD) structural health monitoring of composite structures. The sensor component of any structural health monitoring (SHM) technology — measures the effects of the external load/event and provides the necessary inputs for appropriate preventive/corrective action to be taken in a smart structure — sits at the heart of such a system. This volume explores advances in materials properties and structural behavior underlying creation of smart composite structures and sensor systems for structural health monitoring of critical engineering structures, such as bridges, aircrafts, and wind blades.




Microscale Surface Tension and Its Applications


Book Description

Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.




Programme and The Book of Abstracts / Twelfth Annual Conference YUCOMAT 2010


Book Description

The First Conference on materials science and engineering, including physics, physical chemistry, condensed matter chemistry, and technology in general, was held in September 1995, in Herceg Novi. An initiative to establish Yugoslav Materials Research Society was born at the conference and, similar to other MR societies in the world, the programme was made and objectives determined. The Yugoslav Materials Research Society (Yu-MRS), a nongovernment and non-profit scientific association, was founded in 1997 to promote multidisciplinary goal-oriented research in materials science and engineering. The main task and objective of the Society has been to encourage creativity in materials research and engineering to reach a harmonic coordination between achievements in this field in our country and analogous activities in the world with an aim to include our country into global international projects. Until 2003, Conferences were held every second year and then they grew into Annual Conferences that were traditionally held in Herceg Novi in September of every year. In 2007 Yu-MRS formed two new MRS: MRS-Serbia (official successor of Yu-MRS) and MRS-Montenegro (in founding). In 2008, MRS – Serbia became a member of FEMS (Federation of European Materials Societies). The Twelfth Annual Conference YUCOMAT 2010 was held on September 6-10, 2010 in Heceg Novi, Montenegro




Environmental Mechanochemistry


Book Description

This book provides a comprehensive overview on mechanochemistry including its history, high-energy ball milling process, equipment used and fundamentals behind the observed scientific phenomena. It also shows that mechanochemistry is highly applicable in the field of waste treatment. The text reviews 1017 studies utilizing mostly high-energy ball milling for the treatment of various types of consumer, technogenic and agricultural waste. The text is divided into chapters based on individual waste types. The book presents an Appendix compiling all studies arranged according to the application that the recycled waste is meant for. In this way, readers from both academia and companies interested either in the treatment of a particular waste, or particular application might easily locate sections of interest.