Vision Models for High Dynamic Range and Wide Colour Gamut Imaging


Book Description

To enhance the overall viewing experience (for cinema, TV, games, AR/VR) the media industry is continuously striving to improve image quality. Currently the emphasis is on High Dynamic Range (HDR) and Wide Colour Gamut (WCG) technologies, which yield images with greater contrast and more vivid colours. The uptake of these technologies, however, has been hampered by the significant challenge of understanding the science behind visual perception. Vision Models for High Dynamic Range and Wide Colour Gamut Imaging provides university researchers and graduate students in computer science, computer engineering, vision science, as well as industry R&D engineers, an insight into the science and methods for HDR and WCG. It presents the underlying principles and latest practical methods in a detailed and accessible way, highlighting how the use of vision models is a key element of all state-of-the-art methods for these emerging technologies. - Presents the underlying vision science principles and models that are essential to the emerging technologies of HDR and WCG - Explores state-of-the-art techniques for tone and gamut mapping - Discusses open challenges and future directions of HDR and WCG research




Computer Vision


Book Description

Computer vision has made enormous progress in recent years, and its applications are multifaceted and growing quickly, while many challenges still remain. This book brings together a range of leading researchers to examine a wide variety of research directions, challenges, and prospects for computer vision and its applications. This book highlights various core challenges as well as solutions by leading researchers in the field. It covers such important topics as data-driven AI, biometrics, digital forensics, healthcare, robotics, entertainment and XR, autonomous driving, sports analytics, and neuromorphic computing, covering both academic and industry R&D perspectives. Providing a mix of breadth and depth, this book will have an impact across the fields of computer vision, imaging, and AI. Computer Vision: Challenges, Trends, and Opportunities covers timely and important aspects of computer vision and its applications, highlighting the challenges ahead and providing a range of perspectives from top researchers around the world. A substantial compilation of ideas and state-of-the-art solutions, it will be of great benefit to students, researchers, and industry practitioners.




High Dynamic Range Video


Book Description

At the time of rapid technological progress and uptake of High Dynamic Range (HDR) video content in numerous sectors, this book provides an overview of the key supporting technologies, discusses the effectiveness of various techniques, reviews the initial standardization efforts and explores new research directions in all aspects involved in HDR video systems. Topics addressed include content acquisition and production, tone mapping and inverse tone mapping operators, coding, quality of experience, and display technologies. This book also explores a number of applications using HDR video technologies in the automotive industry, medical imaging, spacecraft imaging, driving simulation and watermarking. By covering general to advanced topics, along with a broad and deep analysis, this book is suitable for both the researcher new or familiar to the area. With this book the reader will: - Gain a broad understanding of all the elements in the HDR video processing chain - Learn the most recent results of ongoing research - Understand the challenges and perspectives for HDR video technologies - Covers a broad range of topics encompassing the whole processing chain in HDR video systems, from acquisition to display - Provides a comprehensive overview of this fast emerging topic - Presents upcoming applications taking advantages of HDR




Color Gamut Mapping


Book Description

Gamut mapping algorithms, implemented by color management systems, are an integral part of the color reproduction process. By adjusting the colors with appropriate algorithms, gamut mapping enables original colors to ‘fit’ inside differently shaped color gamuts and authentically transfers images across a range of media. This book illustrates the range of possible gamut mapping strategies for cross-media color reproduction, evaluates the performance of various options and advises on designing new, improved solutions. Starting with overviews of color science, reproduction and management, the text includes: a detailed survey of 90+ gamut mapping algorithms covering color-by-color reduction and expansion, spatial reduction, spectral reduction and gamut mapping for niche applications; a step-by-step example of a color’s journey from original to reproduction, via a digital workflow; a detailed analysis of color gamut computation, including a comparison of alternative techniques and an illustration of the gamuts of salient color sets and media; a presentation of both measurement-based and psychovisual evaluation of individual color reproductions; an overview of alternative approaches to gamut mapping proposed by the ISO and the CIE including an analysis of the building blocks of gamut mapping algorithms and the factors affecting their performance. Color Gamut Mapping is a comprehensive resource for practicing color and imaging engineers, scientists and researchers working in the development of imaging devices, software and solutions. It is also a valuable reference for students of color and imaging science, as well as photographers, graphic designers and artists.




Advances in Glass Research


Book Description

This book covers preparation methods, characterization, and applications of most glass families. It reports the fundamentals of glass, challenges in the development, traditional and new manufacturing processes, characterization techniques, structural, thermal, and optical properties. The book reviews redox reactions in glasses and the factors affecting them, in addition to the techniques for determining the redox states and speciation of polyvalent ions in glass. A special chapter is dedicate to phosphate glasses, their importance, preparation methods, structure and properties. The use of different types of phosphate glasses in biomedicine, optics, electrochemistry, and as hosts for nuclear wastes is thoroughly discussed. Moreover, the applications of phosphate glasses in electronics and laser technology are also discussed in this book. Recent experimental studies such as the development of a novel bioglass system and the influence of ZnO, TiO2, and Al2O3 incorporation on structural, mechanical strength, degradation, pH variation, and formation of hydroxyapatite (Hap) layer on the glass surface are reported. Promising aluminum-silicate glassy system and its glass-ceramic counterpart are also presented in this books. An overview of the calorimetry approaches related to rare earth improvements on the thermal stability of glass is provided. The book discusses the advances in the chalcogenide glasses (ChGs) and based devices. It also reports their applications in optical devices, semiconductor circuits, and other applications. In addition, lanthanide and/or QDs doped luminescent glasses and their use in solid-state lighting and displays, security (anti-counterfeiting), optical temperature sensors, and solar energy (solar spectrum conversion) are reviewed along with a comparison of their advantages and disadvantages. Finally, the nature of phthalocyanines as materials for glass coatings and most widely used synthesis methods of porphyrins and phthalocyanines are discussed.




Smart Multimedia


Book Description

This book constitutes the proceedings of the First International Conference on Smart Multimedia, ICSM 2018, which was held in Toulon, France, in August 2018. The 39 papers presented were selected from about 100 submissions and are grouped in sections on social, affective and cognition analysis, person-centered smart multimedia: serving people with disabilities to the general population, haptic and robots for smart multimedia applications, MR, 3D, underwater image processing, smart signal processing meets smart sensing, visual behavior analysis: methods and applications, video analysis, learning, low-level vision, miscellaneous.




The high dynamic range imaging pipeline


Book Description

Techniques for high dynamic range (HDR) imaging make it possible to capture and store an increased range of luminances and colors as compared to what can be achieved with a conventional camera. This high amount of image information can be used in a wide range of applications, such as HDR displays, image-based lighting, tone-mapping, computer vision, and post-processing operations. HDR imaging has been an important concept in research and development for many years. Within the last couple of years it has also reached the consumer market, e.g. with TV displays that are capable of reproducing an increased dynamic range and peak luminance. This thesis presents a set of technical contributions within the field of HDR imaging. First, the area of HDR video tone-mapping is thoroughly reviewed, evaluated and developed upon. A subjective comparison experiment of existing methods is performed, followed by the development of novel techniques that overcome many of the problems evidenced by the evaluation. Second, a largescale objective comparison is presented, which evaluates existing techniques that are involved in HDR video distribution. From the results, a first open-source HDR video codec solution, Luma HDRv, is built using the best performing techniques. Third, a machine learning method is proposed for the purpose of reconstructing an HDR image from one single-exposure low dynamic range (LDR) image. The method is trained on a large set of HDR images, using recent advances in deep learning, and the results increase the quality and performance significantly as compared to existing algorithms. The areas for which contributions are presented can be closely inter-linked in the HDR imaging pipeline. Here, the thesis work helps in promoting efficient and high-quality HDR video distribution and display, as well as robust HDR image reconstruction from a single conventional LDR image.







High Dynamic Range Imaging


Book Description

High Dynamic Range Imaging, Second Edition, is an essential resource for anyone working with images, whether it is for computer graphics, film, video, photography, or lighting design. It describes HDRI technology in its entirety and covers a wide-range of topics, from capture devices to tone reproduction and image-based lighting. The techniques described enable students to produce images that have a dynamic range much closer to that found in the real world, leading to an unparalleled visual experience. This revised edition includes new chapters on High Dynamic Range Video Encoding, High Dynamic Range Image Encoding, and High Dynamic Range Display Devices. All existing chapters have been updated to reflect the current state-of-the-art technology. As both an introduction to the field and an authoritative technical reference, this book is essential for anyone working with images, whether in computer graphics, film, video, photography, or lighting design. - New material includes chapters on High Dynamic Range Video Encoding, High Dynamic Range Image Encoding, and High Dynammic Range Display Devices - Written by the inventors and initial implementors of High Dynamic Range Imaging - Covers the basic concepts (including just enough about human vision to explain why HDR images are necessary), image capture, image encoding, file formats, display techniques, tone mapping for lower dynamic range display, and the use of HDR images and calculations in 3D rendering - Range and depth of coverage is good for the knowledgeable researcher as well as those who are just starting to learn about High Dynamic Range imaging - The prior edition of this book included a DVD-ROM. Files from the DVD-ROM can be accessed at: http://www.erikreinhard.com/hdr_2nd/index.html




Advanced High Dynamic Range Imaging


Book Description

This book explores the methods needed for creating and manipulating HDR content. HDR is a step change from traditional imaging; more closely matching what we see with our eyes. In the years since the first edition of this book appeared, HDR has become much more widespread, moving from a research concept to a standard imaging method. This new edition incorporates all the many developments in HDR since the first edition and once again emphasizes practical tips, including the authors' popular HDR Toolbox (available on the authors' website) for MATLAB and gives readers the tools they need to develop and experiment with new techniques for creating compelling HDR content. Key Features: Contains the HDR Toolbox for readers' experimentation on authors' website Offers an up-to-date, detailed guide to the theory and practice of high dynamic range imaging Covers all aspects of the field, from capture to display Provides benchmarks for evaluating HDR imagery