Vortices in Bose-Einstein Condensates


Book Description

This book provides an up-to-date approach to the diagnosis and management of endocarditis based on a critical analysis of the recent studies. It is the only up-to-date clinically oriented textbook available on this subject. The book is structured in a format that is easy to follow, clinically relevant and evidence based. The author has a special interest in the application of ultrasound in the study of cardiac structure and function.




Quantised Vortices


Book Description

Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by the strict rules of topology. The physics of quantum vortices is pivotal to basic science of quantum turbulence and high temperature superconductors, and underpins emerging quantum technologies including topological quantum computation. This handbook is aimed at providing a dictionary style portal to the fascinating quantum world of vortices.




Quantized Vortex Dynamics and Superfluid Turbulence


Book Description

This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that super?uid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the ?ow of the normal ?uid, which was somewhat neglected in the past because of the lack of direct ?ow visualization. Increased computing power is also making it possible to study the coupled motion of super?uid vortices and normal ?uids. Another contact with classical physics arises through the interest in the study of super?uid vortex - connections. Reconnections have been studied for some time in the contexts of classical ?uid dynamics and magneto-hydrodynamics (MHD), and it is useful to learn from the experience acquired in other ?elds.




Bose-Einstein Condensation


Book Description

Bose-Einstein Condensation represents a new state of matter and is one of the cornerstones of quantum physics, resulting in the 2001 Nobel Prize. Providing a useful introduction to one of the most exciting field of physics today, this text will be of interest to a growing community of physicists, and is easily accessible to non-specialists alike.




Vortex Dynamics and Optical Vortices


Book Description

The contents of the book cover a wide variety of topics related to the analysis of the dynamics of vortices and describe the results of experiments, computational modeling and their interpretation. The book contains 13 chapters reaching areas of physics in vortex dynamics and optical vortices including vortices in superfluid atomic gases, vortex laser beams, vortex-antivortex in ferromagnetic hybrids, and optical vortices illumination in chiral nanostructures. Also, discussions are presented on particle motion in vortex flows, on the simulation of vortex-dominated flows, on vortices in saturable media, on achromatic vortices, and on ultraviolet vortices. Fractal light vortices, coherent vortex beams, together with vortices in electric dipole radiation, and spin wave dynamics in magnetic vortices are examined as well.




Universal Themes of Bose-Einstein Condensation


Book Description

Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.




Fundamentals And New Frontiers Of Bose-einstein Condensation


Book Description

This book covers the fundamentals of and new developments in gaseous Bose-Einstein condensation. It begins with a review of fundamental concepts and theorems, and introduces basic theories describing Bose-Einstein condensation (BEC). It then discusses some recent topics such as fast-rotating BEC, spinor and dipolar BEC, low-dimensional BEC, balanced and imbalanced fermionic superfluidity including BCS-BEC crossover and unitary gas, and p-wave superfluidity.




Quantized Vortices in Helium II


Book Description

This book discusses the properties of quantized vortex lines in superfluid helium-4 in the light of research on vortices in modern fluid mechanics, and gives the first comprehensive treatment of the problem. The author's comprehensive approach will make this book invaluable for students taking advanced undergraduate or graduate courses, and for all those involved in research on classical and quantum vortices.




Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.




Quantum Gases


Book Description

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.