Wafer-scale High-bandwidth Germanium on Silicon Photodetectors for Communications Applications


Book Description

The Silicon-on-Insulator (SOI) material system has emerged as a potentially attractive platform for integrated optics, due to the intrinsic low-cost of silicon manufacturing. An especially attractive application is that of telecommunications. One key component for telecommunications applications is high-performance photodetectors, which convert an optical signal to an electrical signal. The key performance metrics for waveguide-coupled photodetectors include low dark current, high responsivity and high bandwidth. In addition, the cross-wafer performance and defectivity is also of great importance, on which the yield of eventual systems will rely. Here I report the first cross-wafer data for waveguide-coupled Ge-on-Si photodetectors based on vertical p-i-n configuration. The performance across the whole wafer is relatively uniform and exhibits low defectivity. Detectors working at speeds up to 20 GHz with 4V reverse bias are achieved, with high responsivities of 0.5 A/W. I describe the testing and characterization methods used to measure the performance of these devices, and identify the source of the bandwidth limitations, and show how these photodetectors are optimal for use at telecom wavelengths, consisting of light with a free-space wavelength near 1550 nm. Finally, a path forward for optimizing the devices in this process is presented. Based on our measurements, using only modest changes in device geometry, it should be possible to improve bandwidths to 70 GHz or more, and responsivities to 1 A/W or more. I propose specific device geometries to implement this improvement. This level of performance is sufficient for SOI based Ge photodetectors to implement even the most high-bandwidth optical telecommunications systems, and should help to make SOI an important platform for integrated optics.




SiGe, Ge, and Related Compounds 4: Materials, Processing, and Devices


Book Description

Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds has become a key component in the arsenal in improving semiconductor performance. This symposium discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.




Photonics and Electronics with Germanium


Book Description

Representing a further step towards enabling the convergence of computing and communication, this handbook and reference treats germanium electronics and optics on an equal footing. Renowned experts paint the big picture, combining both introductory material and the latest results. The first part of the book introduces readers to the fundamental properties of germanium, such as band offsets, impurities, defects and surface structures, which determine the performance of germanium-based devices in conjunction with conventional silicon technology. The second part covers methods of preparing and processing germanium structures, including chemical and physical vapor deposition, condensation approaches and chemical etching. The third and largest part gives a broad overview of the applications of integrated germanium technology: waveguides, photodetectors, modulators, ring resonators, transistors and, prominently, light-emitting devices. An invaluable one-stop resource for both researchers and developers.




Photodetectors


Book Description

Every bit of information that circulates the internet across the globe is a pulse of light, that at some point will need to be converted to an electric signal in order to be processed by the electronic circuitry in our data centers, computers, and cell phones. Photodetectors (PD's) perform this conversion with ultra high speed and efficiency, in addition to being ubiquitously present in many other devices ranging from the mundane TV remote controls, to ultra high resolution instrumentation used in Laser Interferometer Gravitational Wave Observatory (LIGO) that reach the edge of the universe and measure gravitational waves. The second edition of "Photodetectors" fully updates the popular first edition with updated information covering the state-of-the-art in modern photodetectors. The 2nd edition starts with basic metrology of photodetectors and common figures-of-merit to compare various devices. It follows with chapters that discuss single-photon detection with Avalanche Photodiodes; organic photodetectors that can be inkjet printed; and silicon-germanium PDs popular in burgeoning field of Silicon Photonics. Internationally recognized experts contribute chapters on one-dimensional, nanowire, PDs as well as high speed zero-dimensional, quantum dot, versions that increase the spectral span as well as speed and sensitivity of PDs and can be produced on various substrates. Solar-blind PDs that operate in harsh environments such as deep space, or rocket engines, are reviewed and new devices in GaN technology . Novel Plasmonic PDs, as well as devices which employ micro-plasma of confined charge in order to make devices that overcome speed limitation of transfer of electronic charge, are covered in other chapters. Using different, novel technologies, CMOS compatible devices are described in two chapters, and ultra high speed PDs that use low-temperature-grown GaAs (LT-GaAs) to detect fast THz signals are reviewed in another chapter. Photodetectors used in application areas of Silicon-Photonics and Microwave-Photonics are reviewed in final chapters of this book. All chapters are of a review nature, providing a perspective of the field before concentrating on particular advancements. As such, the book should appeal to a wide audience that ranges from those with general interest in the topic, to practitioners, graduate students and experts who are interested in the state-of-the-art in photodetection. - Addresses various photodetector devices from ultra high speed to ultra high sensitivity, capable of operation in harsh environments - Considers a range of applications for this important technology, including silicon photonics and photonic integrated circuits - Includes discussions of detectors based on reduced dimensional systems such as quantum wells, nanowires, and quantum dots, as well as travelling wave, and plasmonic detectors




Integrated Photonics for Data Communication Applications


Book Description

Integrated Photonics for Data Communications Applications reviews the key concepts, design principles, performance metrics and manufacturing processes from advanced photonic devices to integrated photonic circuits. The book presents an overview of the trends and commercial needs of data communication in data centers and high-performance computing, with contributions from end users presenting key performance indicators. In addition, the fundamental building blocks are reviewed, along with the devices (lasers, modulators, photodetectors and passive devices) that are the individual elements that make up the photonic circuits. These chapters include an overview of device structure and design principles and their impact on performance. Following sections focus on putting these devices together to design and fabricate application-specific photonic integrated circuits to meet performance requirements, along with key areas and challenges critical to the commercial manufacturing of photonic integrated circuits and the supply chains being developed to support innovation and market integration are discussed. This series is led by Dr. Lionel Kimerling Executive at AIM Photonics Academy and Thomas Lord Professor of Materials Science and Engineering at MIT and Dr. Sajan Saini Education Director at AIM Photonics Academy at MIT. Each edited volume features thought-leaders from academia and industry in the four application area fronts (data communications, high-speed wireless, smart sensing, and imaging) and addresses the latest advances. - Includes contributions from leading experts and end-users across academia and industry working on the most exciting research directions of integrated photonics for data communications applications - Provides an overview of data communication-specific integrated photonics starting from fundamental building block devices to photonic integrated circuits to manufacturing tools and processes - Presents key performance metrics, design principles, performance impact of manufacturing variations and operating conditions, as well as pivotal performance benchmarks




Silicon Photonics for High-Performance Computing and Beyond


Book Description

Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.




Semiconductor Technologies


Book Description

Semiconductor technologies continue to evolve and amaze us. New materials, new structures, new manufacturing tools, and new advancements in modelling and simulation form a breeding ground for novel high performance electronic and photonic devices. This book covers all aspects of semiconductor technology concerning materials, technological processes, and devices, including their modelling, design, integration, and manufacturing.




Advances in Optical Fiber Technology


Book Description

This book is a compilation of works presenting recent developments and practical applications in optical fiber technology. It contains 13 chapters from various institutions that represent global research in various topics such as scattering, dispersion, polarization interference, fuse phenomena and optical manipulation, optical fiber laser and sensor applications, passive optical network (PON) and plastic optical fiber (POF) technology. It provides the reader with a broad overview and sampling of the innovative research on optical fiber technologies.




Silicon-organic hybrid (SOH) electro-optic modulators for high-speed and power-efficient communications


Book Description

Silicon-organic hybrid (SOH) modulators add a highly efficient nonlinear organic electro-optic cladding material to the silicon photonic platform, thereby enabling efficient electro-optic modulation. In this book, the application potential of SOH modulators is investigated. Proof-of-principle experiments show that they can be used for high-speed communications at symbol rates up to 100 GBd and operated directly from a field-programmable gate array (FPGA) without additional driver amplifiers.




Graphene Photonics


Book Description

Graphene is a single-layer crystal of carbon, the thinnest two-dimensional material. It has unique electronic and photonic properties.