Wake Vortex Advisory System (WakeVAS) Concept of Operations


Book Description

NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.Rutishauser, David and Lohr, Gary and Hamilton, David and Powers, Robert and McKissick, Burnell and Adams, Catherine and Norris, EdwardLangley Research CenterAIRCRAFT WAKES; VORTEX ADVISORY SYSTEM; VORTICES; NASA PROGRAMS; AIRCRAFT APPROACH SPACING; AIR TRAFFIC CONTROL; ARRIVALS







Analysis of Wake Vas Benefits Using Aces Build 3.2.1


Book Description

The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. The Phase III Wake VAS ConOps is one element of the Virtual Airspace Modelling and Simulation (VAMS) program blended concepts for enhancing the total system wide capacity of the National Airspace System (NAS). This report contains a VAMS Program Type 1 (stand-alone) assessment of the expected capacity benefits of Wake VAS at the 35 FAA Benchmark Airports and determines the consequent reduction in delay using the Airspace Concepts Evaluation System (ACES) Build 3.2.1 simulator.Smith, Jeremy C.Langley Research CenterAIRSPACE; NATIONAL AIRSPACE SYSTEM; TURBULENCE; VORTEX ADVISORY SYSTEM; WAKES; ATMOSPHERIC SOUNDING; DETECTION; SAFETY; SATELLITE SOUNDING; SIMULATORS




Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case


Book Description

This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA's Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data. Switzer, George F. Langley Research Center RTI/8438/006-02F




Analysis of Wakevas Benefits Using Aces Build 3. 2. 1


Book Description

The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. This report contains an analysis that evaluates the benefits of a closely spaced parallel runway (CSPR) Phase I ConOps, a single runway and CSPR Phase II ConOps and a single runway Phase III ConOps. A series of simulation runs were performed using the Airspace Concepts Evaluation System (ACES) Build 3.21 air traffic simulator to provide an initial assessment of the reduction in delay and cost savings obtained by the use of a WakeVAS at selected U.S. airports. The ACES simulator is being developed by NASA Ames Research Center as part of the Virtual Airspace Modelling and Simulation (VAMS) program.




Analysis of Wake Vas Benefits Using Aces Build 3. 2. 1


Book Description

The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. The Phase III Wake VAS ConOps is one element of the Virtual Airspace Modelling and Simulation (VAMS) program blended concepts for enhancing the total system wide capacity of the National Airspace System (NAS). This report contains a VAMS Program Type 1 (stand-alone) assessment of the expected capacity benefits of Wake VAS at the 35 FAA Benchmark Airports and determines the consequent reduction in delay using the Airspace Concepts Evaluation System (ACES) Build 3.2.1 simulator.







Viscous Effects on a Vortex Wake in Ground Effect


Book Description

Wake vortex trajectories and strengths are altered radically by interactions with the ground plane. Prediction of vortex strength and location is especially important in the vicinity of airports. Simple potential flow methods have been found to yield reasonable estimates of vortex descent rates in an otherwise quiescent ambient background, but those techniques cannot be adjusted for more realistic ambient conditions and they fail to provide satisfactory estimates of ground-coupled behavior. The authors have been involved in a systematic study concerned with including viscous effects in a wake-vortex system which is near the ground plane. The study has employed numerical solutions to the Navier-Stokes equations, as well as perturbation techniques to study ground coupling with a descending vortex pair. Results of a two-dimensional, unsteady numerical-theoretical study are presented in this paper. A time-based perturbation procedure has been developed which permits the use of analytical solutions to an inner and outer flow domain for the initial flow field. Predictions have been compared with previously reported laminar experimental results. In addition, the influence of stratification and turbulence on vortex behavior near the ground plane has been studied. Zheng, Z. and Ash, Robert L. Unspecified Center NAG1-987...