Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants


Book Description

Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants contains the latest information on big data-driven risk detection and analysis, risk assessment and environmental health effect, intelligent risk control technologies, and global control strategy of emerging contaminants. First, this book highlights advances and challenges throughout the detection of emerging chemical contaminants (e.g., antimicrobials, microplastics) by sensors or mass spectrometry, as well as emerging biological contaminant (e.g., ARGs, pathogens) by a combination of next- and third-generation sequencing technologies in aquatic environment. Second, it discusses in depth the ecological risk assessment and environmental health effects of emerging contaminants. Lastly, it presents the most up-to-date intelligent risk management technologies. This book shares instrumental global strategy and policy analysis on how to control emerging contaminants. Offering interdisciplinary and global perspectives from experts in environmental sciences and engineering, environmental microbiology and microbiome, environmental informatics and bioinformatics, intelligent systems, and knowledge engineering, this book provides an accessible and flexible resource for researchers and upper level students working in these fields. - Covers the detection, high-throughput analyses, and environmental behavior of the typical emerging chemical and biological contaminants - Focuses on chemical and biological big data driven aquatic ecological risk assessment models and techniques - Highlights the intelligent management and control technologies and policies for emerging contaminants in water environments




Water Safety, Security and Sustainability


Book Description

This book focuses on threats, especially contaminants, to drinking water and the supply system, especially in municipalities but also in industrial and even residential settings. The safety, security, and suitability landscape can be described as dynamic and complex stemming from necessity and hence culpability due to the emerging threats and risks, vis-a-vis globalization resulting in new forms of contaminants being used due to new technologies. The book provides knowledge and guidance for engineers, scientists, designers, researchers, and students who are involved in water, sustainability, and study of security issues. This book starts out with basics of water usage, current statistics, and an overview ofwater resources. The book then introduces different scenarios of safety and security and areas that researchers need to focus. Following that, the book presents different types of contaminants – inadvertent, intentional, or incidental. The next section presents different methodologies of contamination sensing/detection and remediation strategies as per guidance and standards set globally. The book then concludes with selected chapters on water management, including critical infrastructure that is critical to maintaining safe water supplies to cities and municipalities. Each chapter includes descriptive information for professionals in their respective fields. The breadth of chapters offers insights into how science (physical, natural, and social) and technology can support new developments to manage the complexity resident within the evolving threat and risk landscape.




The United Nations World Water Development Report 2020


Book Description

The 2020 edition of the WWDR, titled Water and Climate Change illustrates the critical linkages between water and climate change in the context of the broader sustainable development agenda. Supported by examples from across the world, it describes both the challenges and opportunities created by climate change, and provides potential responses – in terms of adaptation, mitigation and improved resilience – that can be undertaken by enhancing water resources management, attenuating water-related risks, and improving access to water supply and sanitation services for all in a sustainable manner. It addresses the interrelations between water, people, environment and economics in a changing climate, demonstrating how climate change can be a positive catalyst for improved water management, governance and financing to achieve a sustainable and prosperous world for all. The report provides a fact-based, water-focused contribution to the knowledge base on climate change. It is complementary to existing scientific assessments and designed to support international political frameworks, with the goals of helping the water community tackle the challenges of climate change, and informing the climate change community about the opportunities that improved water management offers in terms of adaptation and mitigation.




Bioanalytical Tools in Water Quality Assessment


Book Description

Part of Water Quality Set - Buy all four books and save over 30% on buying separately! Bioanalytical Tools in Water Quality Assessment reviews the application of bioanalytical tools to the assessment of water quality including surveillance monitoring. The types of water included range from wastewater to drinking water, including recycled water, as well as treatment processes and advanced water treatment. Bioanalytical Tools in Water Quality Assessment not only demonstrates applications but also fills in the background knowledge in toxicology/ecotoxicology needed to appreciate these applications. Each chapter summarises fundamental material in a targeted way so that information can be applied to better understand the use of bioanalytical tools in water quality assessment. Bioanalytical tools in Water Quality Assessment can be used by lecturers teaching academic and professional courses and also by risk assessors, regulators, experts, consultants, researchers and managers working in the water sector. It can also be a reference manual for environmental engineers, analytical chemists, and toxicologists. Authors: Beate Escher, National Research Centre for Environmental Toxicology (EnTox), The University of Queensland, Australia, Frederic Leusch, Smart Water Research Facility (G51), Griffith University Gold Coast Campus, Australia. With contributions by Heather Chapman and Anita Poulsen




Risk Management of Water Supply and Sanitation Systems


Book Description

Each year more than 200 million people are affected by floods, tropical storms, droughts, earthquakes, and also operational failures, wars, terrorism, vandalism, and accidents involving hazardous materials. These are part of the wide variety of events that cause death, injury, and significant economic losses for the countries affected. In an environment where natural hazards are present, local actions are decisive in all stages of risk management: in the work of prevention and mitigation, in rehabilitation and reconstruction, and above all in emergency response and the provision of basic services to the affected population. Commitment to systematic vulnerability reduction is crucial to ensure the resilience of communities and populations to the impact of natural and manmade hazards. Current challenges for the water and sanitation sector require an increase in sustainable access to water and sanitation services in residential areas, where natural hazards pose the greatest risk. In settlements located on unstable and risk-prone land there is growing environmental degradation coupled with extreme conditions of poverty that increase vulnerability. The development of local capacity and risk management play vital roles in obtaining sustainability of water and sanitation systems as well as for the communities themselves. Unfortunately water may also represent a potential target for terrorist activity or war conflict and a deliberate contamination of water is a potential public health threat. An approach which considers the needs of communities and institutions is particularly important in urban areas affected by armed conflict. Risk management for large rehabilitation projects has to deal with major changes caused by conflict: damaged or destroyed infrastructure, increased population, corrupt or inefficient water utilities, and impoverished communities. Water supply and sanitation are amongst the first considerations in disaster response. The greatest water-borne risk to health in most emergencies is the transmission of faecal pathogens, due to inadequate sanitation, hygiene and protection of water sources. However, some disasters, including those involving damage to chemical and nuclear industrial installations, or involving volcanic activity, may create acute problems from chemical or radiological water pollution. Sanitation includes safe excreta disposal, drainage of wastewater and rainwater, solid waste disposal and vector control. This book is based on the discussions and papers prepared for the NATO Advanced Research Workshop that took place in Ohrid, Macedonia under the auspices of the NATO Security Through Science Programme and addressed problems Risk management of water supply and sanitation systems impaired by operational failures, natural disasters and war conflicts. The main purpose of the workshop was to critically assess the existing knowledge on Risk management of water supply and sanitation systems, with respect to diverse conditions in participating countries, and promote close co-operation among scientists with different professional experience from different countries. The ARW technical program comprised papers on 4 topics, : (a) Vulnerability of Wastewater and Sanitation Systems, (b) Vulnerability of Drinking Water Systems, (c) Emergency response plans, and (d) Case studies from regions affected by Drinking Water System, Wastewater and Sanitation System failures.




Risk Management for Water and Wastewater Utilities


Book Description

Water risks and security are a major global hazard in the 21st century and it is essential that water professionals have a solid grounding in the principles of preventative risk management. This second edition of the key textbook, Risk Management for Water and Wastewater Utilities, extends beyond first principles and examines the practicalities of resilience and vulnerability assessment, strategic risk appraisal and the interconnectedness of water utility risks in a networked infrastructure. It provides an up-dated overview of tools and techniques for risk management in the context of the heightened expectations for sound risk governance that are being made of all water and wastewater utilities. Risk Management for Water and Wastewater Utilities provides a valuable starting point for newly appointed risk managers in the utility sector and offers MSc level self-paced study with self-assessment questions and abbreviated answers, key learning points, case studies and worked examples.




Bulletin of the Atomic Scientists


Book Description

The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.




Bulletin of the Atomic Scientists


Book Description

The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.




The Water Footprint Assessment Manual


Book Description

People use lots of water for drinking, cooking and washing, but significantly more for producing things such as food, paper and cotton clothes. The water footprint is an indicator of water use that looks at both direct and indirect water use of a consumer or producer. Indirect use refers to the 'virtual water' embedded in tradable goods and commodities, such as cereals, sugar or cotton. The water footprint of an individual, community or business is defined as the total volume of freshwater that is used to produce the goods and services consumed by the individual or community or produced by the business. This book offers a complete and up-to-date overview of the global standard on water footprint assessment as developed by the Water Footprint Network. More specifically it: o Provides a comprehensive set of methods for water footprint assessment o Shows how water footprints can be calculated for individual processes and products, as well as for consumers, nations and businesses o Contains detailed worked examples of how to calculate green, blue and grey water footprints o Describes how to assess the sustainability of the aggregated water footprint within a river basin or the water footprint of a specific product o Includes an extensive library of possible measures that can contribute to water footprint reduction




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.