Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics


Book Description

The material in this book is based predominantly on my recent work. It is the first monograph on the subject, though some support material may overlap other monographs. The investigation of wave packets and their bi furcations is very interesting, and useful theoretically and in practice, not only in geophysical fluid dynamics, which is the field to which the theory is being applied here, but also in other fields in mathematics and the natural sciences. I hope that the applied mathematician will find reading this book worthwhile, especially the material on the behavior of highly nonlinear dy namic systems. However, it is my belief that applying the concepts and methods developed here to other fields will be both interesting and con structive, since there are numerous phenomena in other areas of physics that share the characteristics of those in geophysical fluid dynamics. The theory developed here provides an effective tool to investigate the structure and the structural changes of dynamic systems in physics. Applications of the theory in geophysical fluid dynamics are an example of its usefulness and effectiveness. Some of the results presented here give us more insight into the nature of geophysical fluids. Moreover, the material is presented systematically and developmentally. Necessary basic knowledge is provided to make the book more readable for graduate students and researchers in such fields as applied mathematics, geophysical fluid dynamics, atmospheric sciences, and physical oceanogra phy.




Singularities and Groups in Bifurcation Theory


Book Description

This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.




Mathematical Theory of Incompressible Nonviscous Fluids


Book Description

Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.




Differential Models of Hysteresis


Book Description

Hysteresis effects occur in science and engineering: plasticity, ferromagnetism, ferroelectricity are well-known examples. This volume provides a self-contained and comprehensive introduction to the analysis of hysteresis models, and illustrates several new results in this field.




Dynamics in Infinite Dimensions


Book Description

State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications




Dynamics of Evolutionary Equations


Book Description

The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. Dynamical issues arise in equations that attempt to model phenomena that change with time. The infi nite dimensional aspects occur when forces that describe the motion depend on spatial variables, or on the history of the motion. In the case of spatially depen dent problems, the model equations are generally partial differential equations, and problems that depend on the past give rise to differential-delay equations. Because the nonlinearities occurring in thse equations need not be small, one needs good dynamical theories to understand the longtime behavior of solutions. Our basic objective in writing this book is to prepare an entree for scholars who are beginning their journey into the world of dynamical systems, especially in infinite dimensional spaces. In order to accomplish this, we start with the key concepts of a semiflow and a flow. As is well known, the basic elements of dynamical systems, such as the theory of attractors and other invariant sets, have their origins here.




Dynamics: Numerical Explorations


Book Description

Co-author J.A. Yorke developed an array of tools to help visualize the properties of dynamical systems, while Yorke found it useful to combine these various basic tools into one single package: Dynamics. The program together with this manual provides an introduction to and an overview of fundamental, sophisticated tools and numerical methods together with many simple examples. All numerical methods described in this handbook are implemented in the program, which is capable of, among others: iterating maps and solving differential equations; plotting trajectories; featuring an array of simple commands; printing a created picture in resolution higher than that of the screen. Requires a UNIX workstation running X11 graphics or a PC.




Determinants and Their Applications in Mathematical Physics


Book Description

A unique and detailed account of all important relations in the analytic theory of determinants, from the classical work of Laplace, Cauchy and Jacobi to the latest 20th century developments. The first five chapters are purely mathematical in nature and make extensive use of the column vector notation and scaled cofactors. They contain a number of important relations involving derivatives which prove beyond a doubt that the theory of determinants has emerged from the confines of classical algebra into the brighter world of analysis. Chapter 6 is devoted to the verifications of the known determinantal solutions of several nonlinear equations which arise in three branches of mathematical physics, namely lattice, soliton and relativity theory. The solutions are verified by applying theorems established in earlier chapters, and the book ends with an extensive bibliography and index. Several contributions have never been published before. Indispensable for mathematicians, physicists and engineers wishing to become acquainted with this topic.




Inverse Acoustic and Electromagnetic Scattering Theory


Book Description

It has now been almost ten years since our first book on scattering theory ap peared [32]. At that time we claimed that "in recent years the development of integral equation methods for the direct scattering problem seems to be nearing completion, whereas the use of such an approach to study the inverse scattering problem has progressed to an extent that a 'state of the art' survey appears highly desirable". Since we wrote these words, the inverse scattering problem for acoustic and electromagnetic waves has grown from being a few theoreti cal considerations with limited numerical implementations to a weH developed mathematical theory with tested numerical algorithms. This maturing of the field of inverse scattering theory has been based on the realization that such problems are in general not only nonlinear but also improperly posed in the sense that the solution does not depend continuously on the measured data. This was emphasized in [32] and treated with the ideas and tools available at that time. Now, almost ten years later, these initial ideas have developed to the extent that a monograph summarizing the mathematical basis of the field seems appropriate. This book is oUf attempt to write such a monograph. The inverse scattering problem for acoustic and electromagnetic waves can broadly be divided into two classes, the inverse obstacle problem and the inverse medium problem.




Regular and Chaotic Dynamics


Book Description

This book treats nonlinear dynamics in both Hamiltonian and dissipative systems. The emphasis is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion, and the dynamical and statistical properties of the dynamics when it is chaotic. The new edition brings the subject matter in a rapidly expanding field up to date, and has greatly expanded the treatment of dissipative dynamics to include most important subjects.