Wavelet Applications in Engineering Electromagnetics


Book Description

Written from an engineering perspective, this unique resource describes the practical application of wavelets to the solution of electromagnetic field problems and in signal analysis with an even-handed treatment of the pros and cons. A key feature of this book is that the wavelet concepts have been described from the filter theory point of view that is familiar to researchers with an electrical engineering background. The book shows you how to design novel algorithms that enable you to solve electrically, large electromagnetic field problems using modest computational resources. It also provides you with new ideas in the design and development of unique waveforms for reliable target identification and practical radar signal analysis. The book includes more then 500 equations, and covers a wide range of topics, from numerical methods to signal processing aspects.




Fundamentals of Wavelets


Book Description

Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of: a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc a section on lifting algorithms Sections on Edge Detection and Geophysical Applications Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems




Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology


Book Description

The use of the wavelet transform to analyze the behaviour of the complex systems from various fields started to be widely recognized and applied successfully during the last few decades. In this book some advances in wavelet theory and their applications in engineering, physics and technology are presented. The applications were carefully selected and grouped in five main sections - Signal Processing, Electrical Systems, Fault Diagnosis and Monitoring, Image Processing and Applications in Engineering. One of the key features of this book is that the wavelet concepts have been described from a point of view that is familiar to researchers from various branches of science and engineering. The content of the book is accessible to a large number of readers.




Wavelets in Electromagnetics and Device Modeling


Book Description

Thema des Buches ist die Elementarwellen- (Wavelet-) -Theorie (Zeit-Frequenz-Analyse), ein Grenzgebiet zwischen Mathematik und Ingenieurwissenschaften. - viele Anwendungen in der Elektronik, darunter Antennentheorie und drahtlose Kommunikation - erstes Buch, das die Wavelet-Theorie auf elektromagnetische Phänomene und auf die Modellierung von Halbleiterbauelementen anwendet




A Friendly Guide to Wavelets


Book Description

This volume is designed as a textbook for an introductory course on wavelet analysis and time-frequency analysis aimed at graduate students or advanced undergraduates in science and engineering. It can also be used as a self-study or reference book by practicing researchers in signal analysis and related areas. Since the expected audience is not presumed to have a high level of mathematical background, much of the needed analytical machinery is developed from the beginning. The only prerequisites for the first eight chapters are matrix theory, Fourier series, and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises designed to drive home the concepts just covered, and the many graphics should further facilitate absorption.




Wavelet Transforms and Their Applications


Book Description

This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Topics and Features: * This second edition heavily reworks the chapters on Extensions of Multiresolution Analysis and Newlands’s Harmonic Wavelets and introduces a new chapter containing new applications of wavelet transforms * Uses knowledge of Fourier transforms, some elementary ideas of Hilbert spaces, and orthonormal systems to develop the theory and applications of wavelet analysis * Offers detailed and clear explanations of every concept and method, accompanied by carefully selected worked examples, with special emphasis given to those topics in which students typically experience difficulty * Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises for additional help Mathematicians, physicists, computer engineers, and electrical and mechanical engineers will find Wavelet Transforms and Their Applications an exceptionally complete and accessible text and reference. It is also suitable as a self-study or reference guide for practitioners and professionals.




Fundamentals Of Wavelets:Theory, Algorithms And Applications


Book Description

Fundamentals of Wavelets offer a practical, up-to-date overview of wavelet theory from an engineering point of view. Based on courses taught by the authors at Texas A&M University and at professional, international, technical conferences, this accessible yet detailed treatment provides readers with a clear understanding of the theory and the application of wavelet analysis in many areas of engineering. · Mathematical Preliminaries· Fourier Analysis· Time-Frequency Analysis· Multi resolution Analysis· Construction of Wavelets· Discrete Wavelet Transform and Filter Bank Algorithms· Fast Integral Transform and Applications· Digital Signal Processing Applications· Wavelets in Boundary Value Problems




Wavelet Theory and Its Applications


Book Description

The continuous wavelet transform has deep mathematical roots in the work of Alberto P. Calderon. His seminal paper on complex method of interpolation and intermediate spaces provided the main tool for describing function spaces and their approximation properties. The Calderon identities allow one to give integral representations of many natural operators by using simple pieces of such operators, which are more suited for analysis. These pieces, which are essentially spectral projections, can be chosen in clever ways and have proved to be of tremendous utility in various problems of numerical analysis, multidimensional signal processing, video data compression, and reconstruction of high resolution images and high quality speech. A proliferation of research papers and a couple of books, written in English (there is an earlier book written in French), have emerged on the subject. These books, so far, are written by specialists for specialists, with a heavy mathematical flavor, which is characteristic of the Calderon-Zygmund theory and related research of Duffin-Schaeffer, Daubechies, Grossman, Meyer, Morlet, Chui, and others. Randy Young's monograph is geared more towards practitioners and even non-specialists, who want and, probably, should be cognizant of the exciting proven as well as potential benefits which have either already emerged or are likely to emerge from wavelet theory.




Wavelets and their Applications


Book Description

The last 15 years have seen an explosion of interest in wavelets with applications in fields such as image compression, turbulence, human vision, radar and earthquake prediction. Wavelets represent an area that combines signal in image processing, mathematics, physics and electrical engineering. As such, this title is intended for the wide audience that is interested in mastering the basic techniques in this subject area, such as decomposition and compression.




Wavelets


Book Description

Wavelets are spatially localized functions whose amplitude drops off exponentially outside a small "window". They are used to magnify experimental or numerical data and have become powerful tools in signal processing and other computational sciences. This book gives scientists and engineers a practical understanding of wavelets--their origins, their purpose, their use, and their prospects. It covers the applications of wavelets as a diagnostic tool and the use of wavelet basis functions to solve differential equations. Each chapter was written by one of five lecturers of a course sponsored by the Institute of Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center. Not only does this book treat the latest advances on the subject, but it also attempts to impart practical knowledge to allow scientists and engineers to evaluate objectively where these tools stand in relation to their needs.