Waves in Geophysical Fluids


Book Description

This book describes the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans. It presents stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave. Coverage also reveals the full story about the discovery of the very large oceanic internal waves.




Numerical Methods for Wave Equations in Geophysical Fluid Dynamics


Book Description

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.




Introduction to Geophysical Fluid Dynamics


Book Description

Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation Biographical and historical notes at the ends of chapters trace the intellectual development of the field Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)




Geophysical Fluid Dynamics


Book Description

This second edition of the widely acclaimed Geophysical Fluid Dynamics by Joseph Pedlosky offers the reader a high-level, unified treatment of the theory of the dynamics of large-scale motions of the oceans and atmosphere. Revised and updated, it includes expanded discussions of * the fundamentals of geostrophic turbulence * the theory of wave-mean flow interaction * thermocline theory * finite amplitude barocline instability.




Lectures on Geophysical Fluid Dynamics


Book Description

Lectures on Geophysical Fluid Dynamics offers an introduction to several topics in theoretical geophysical fluid dynamics, including the theory of large-scale ocean circulation, geostrophic turbulence, and Hamiltonian fluid dynamics. The book is based on an introductory course in dynamical oceanography offered to first-year graduate students at Scripps Institution of Oceanography. Each chapter is a self-contained introduction ti its particular subject, and makes few specific references to other chapters. Chapters 1 examines the relationship between the molecular and continuum models of the fluid, and between the Eulerian and Lagrangian descriptions of the latter. Ch.2 is a broad introduction to the fluid dynamics of rotating, stratified flows. Ch.3 adddresses large-scale ocean circulation. Chs.4,5 and 6 discuss the theory of turbulence, including elementary ideas based on vorticity laws (Ch.4), statistical turbulence theory (Ch.5), and the applications of these ideas to quasigeostrophic flows in the Earth's oceans and atmosphere (Ch.6). Ch.7 surveys Hamiltonoian fluid dynamics, including the interaction between waves and currents, and "balanced" approximations to nearly geostrophic flow. Overall, the emphasis is on physical ideas rather than mathematical techniques. Readers are assumed to have had an elementary introduction to fluid mechanics, to know advanced calculus through partial differential equations, and to be familiar with the elementary ideas about linear waves, including the concept of group velocity.




Theoretical Geophysical Fluid Dynamics


Book Description

This book grew out of lectures on geophysical fluid dynamics delivered over many years at the Moscow Institute of Physics and Technology by the author (and, with regard to some parts of the book, by his colleagues). During these lectures the students were advised to read many books, and sometimes individual articles, in order to acquaint themselves with the necessary material, since there was no single book available which provided a sufficiently complete and systematic account (except, perhaps, the volumes on Hydrophysics of the Ocean, Hydrodynamics of the Ocean, and Geodynamics in the ten-volume Oceanology series published by Nauka Press in 1978-1979; these refer, however, specifically to the ocean, and anyway they are much too massive to be convenient for study by students). As far as we know, no text corresponding to our understanding of geophysical fluid dynamics has as yet been published outside the Soviet Union. The present book is designed to fill this gap. Since it is customary to write the preface after the entire book has been completed, the author has an opportunity there to raise some points of possible criticism by the reviewers and readers. First of all, note that this work presents the theoretical fundamentals of geophysical fluid dynamics, and that observational and experimental data (which in the natural sciences are always very copious) are referred to only rarely and briefly.




Numerical Methods for Wave Equations in Geophysical Fluid Dynamics


Book Description

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.




Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics


Book Description

The material in this book is based predominantly on my recent work. It is the first monograph on the subject, though some support material may overlap other monographs. The investigation of wave packets and their bi furcations is very interesting, and useful theoretically and in practice, not only in geophysical fluid dynamics, which is the field to which the theory is being applied here, but also in other fields in mathematics and the natural sciences. I hope that the applied mathematician will find reading this book worthwhile, especially the material on the behavior of highly nonlinear dy namic systems. However, it is my belief that applying the concepts and methods developed here to other fields will be both interesting and con structive, since there are numerous phenomena in other areas of physics that share the characteristics of those in geophysical fluid dynamics. The theory developed here provides an effective tool to investigate the structure and the structural changes of dynamic systems in physics. Applications of the theory in geophysical fluid dynamics are an example of its usefulness and effectiveness. Some of the results presented here give us more insight into the nature of geophysical fluids. Moreover, the material is presented systematically and developmentally. Necessary basic knowledge is provided to make the book more readable for graduate students and researchers in such fields as applied mathematics, geophysical fluid dynamics, atmospheric sciences, and physical oceanogra phy.




Internal Waves in Geophysical Contexts


Book Description

This present volume consists mainly of papers presented at the conference plus a paper by a scientist who was unable to attend. The main theme of the conference centered around problems connected with oscillations that arise in geophysical fluid dynamics, with the theme of wave motions in fluids that are rotating and/or stratified and/or electrically conducting. Geophysical applications included the following - motions in the Earth's fluid core, oscillations in the oceans with emphasis on the effects of tomography, internal waves in lakes and enclosed seas, convective instabilities, and non-linear wave interactions.




Geophysical Waves and Flows


Book Description

Waves and flows are pervasive on and within Earth. This book presents a unified physical and mathematical approach to waves and flows in the atmosphere, oceans, rivers, volcanoes and the mantle, emphasizing the common physical principles and mathematical methods that apply to a variety of phenomena and disciplines. It is organized into seven parts: introductory material; kinematics, dynamics and rheology; waves in non-rotating fluids; waves in rotating fluids; non-rotating flows; rotating flows; and silicate flows. The chapters are supplemented by 47 'fundaments', containing knowledge that is fundamental to the material presented in the main text, organized into seven appendices: mathematics; dimensions and units; kinematics; dynamics; thermodynamics; waves; and flows. This book is an ideal reference for graduate students and researchers seeking an introduction to the mathematics of waves and flows in the Earth system, and will serve as a supplementary textbook for a number of courses in geophysical fluid dynamics.