We Reason & We Prove for ALL Mathematics


Book Description

Sharpen concrete teaching strategies that empower students to reason-and-prove How do teachers and students benefit from engaging in reasoning-and-proving? What strategies can teachers use to support students’ capacity to reason-and-prove? What does reasoning-and-proving instruction look like? We Reason & We Prove for ALL Mathematics helps mathematics teachers in grades 6-12 engage in the critical practice of reasoning-and-proving and support the development of reasoning-and-proving in their students. The phrase "reasoning-and-proving" describes the processes of identifying patterns, making conjectures, and providing arguments that may or may not qualify as proofs – processes that reflect the work of mathematicians. Going beyond the idea of "formal proof" traditionally relegated only to geometry, this book transcends all mathematical content areas with a variety of activities for teachers to learn more about reasoning-and-proving and about how to support students’ capacities to engage in this mathematical thinking through: Solving and discussing high-level mathematical tasks Analyzing narrative cases that make the relationship between teaching and learning salient Examining and interpreting student work that features a range of solution strategies, representations, and misconceptions Modifying tasks from curriculum materials so that they better support students to reason-and-prove Evaluating learning environments and making connections between key ideas about reasoning-and-proving and teaching strategies We Reason & We Prove for ALL Mathematics is designed as a learning tool for practicing and pre-service mathematics teachers and can be used individually or in a group. No other book tackles reasoning-and-proving with such breadth, depth, and practical applicability. Classroom examples, case studies, and sample problems help to sharpen concrete teaching strategies that empower students to reason-and-prove!




We Reason & We Prove for ALL Mathematics


Book Description

Sharpen concrete teaching strategies that empower students to reason-and-prove What does reasoning-and-proving instruction look like and how can teachers support students’ capacity to reason-and-prove? Designed as a learning tool for mathematics teachers in grades 6-12, this book transcends all mathematical content areas with a variety of activities for teachers that include Solving and discussing high-level mathematical tasks Analyzing narrative cases that make the relationship between teaching and learning salient Examining and interpreting student work Modifying curriculum materials and evaluating learning environments to better support students to reason-and-prove No other book tackles reasoning-and-proving with such breath, depth, and practical applicability.




All the Mathematics You Missed


Book Description




How to Prove It


Book Description

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.




Book of Proof


Book Description

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.




We Reason & We Prove for ALL Mathematics


Book Description

Sharpen concrete teaching strategies that empower students to reason-and-prove How do teachers and students benefit from engaging in reasoning-and-proving? What strategies can teachers use to support students' capacity to reason-and-prove? What does reasoning-and-proving instruction look like? We Reason & We Prove for ALL Mathematics helps mathematics teachers in grades 6--12 engage in the critical practice of reasoning-and-proving and support the development of reasoning-and-proving in their students. The phrase "reasoning-and-proving" describes the processes of identifying patterns, making conjectures, and providing arguments that may or may not qualify as proofs-processes that reflect the work of mathematicians. Going beyond the idea of "formal proof" traditionally relegated only to geometry, this book transcends all mathematical content areas with a variety of activities for teachers to learn more about reasoning-and-proving and about how to support students' capacities to engage in this mathematical thinking through: Solving and discussing high-level mathematical tasks Analyzing narrative cases that make the relationship between teaching and learning salient Examining and interpreting student work that features a range of solution strategies, representations, and misconceptions Modifying tasks from curriculum materials so that they better support students to reason-and-prove Evaluating learning environments and making connections between key ideas about reasoning-and-proving and teaching strategies We Reason & We Prove for ALL Mathematics is designed as a learning tool for practicing and pre-service mathematics teachers and can be used individually or in a group. No other book tackles reasoning-and-proving with such breadth, depth, and practical applicability. Classroom examples, case studies, and sample problems help to sharpen concrete teaching strategies that empower students to reason-and-prove!




Five Golden Rules


Book Description

In Five Golden Rules, John L. Casti serves as curator to a brilliant collection of 20th-century mathematical theories, leading us on a fascinating journey of discovery and insight. Probing the frontiers of modern mathematics, Casti examines the origins of some of the most important findings of this century. This is a tale of mystery and logic, elegance and reason; it is the story of five monumental mathematical breakthroughs and how they shape our lives. All those intrigued by the mathematical process, nonacademics and professionals alike, will find this an enlightening, eye-opening, and entertaining work. High school algebra or geometry - and enthusiasm - are the only prerequisites. From the theorem that provided the impetus for modern computers to the calculations that sent the first men to the Moon, these breakthroughs have transformed our lives. Casti illustrates each theorem with a dazzling array of real-world problems it has helped solve - how to calculate the shape of space, optimize investment returns, even chart the course of the development of organisms. Along the way, we meet the leading thinkers of the day: John von Neumann, L. E. J. Brouwer, Marston Morse, and Alan Turing, among others. And we come to understand the combination of circumstances that led each to such revolutionary discoveries as the Minimax Theorem, which spawned the exciting field of game theory, and the Simplex Method, which underpins the powerful tools of optimization theory.




Proof Technology in Mathematics Research and Teaching


Book Description

This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is quite different. Digital technologies have transformed how mathematicians work together, how proof is taught in schools and universities, and even the nature of proof itself. Checking billions of cases in extremely large but finite sets, impossible a few decades ago, has now become a standard method of proof. Distributed proving, by teams of mathematicians working independently on sections of a problem, has become very much easier as digital communication facilitates the sharing and comparison of results. Proof assistants and dynamic proof environments have influenced the verification or refutation of conjectures, and ultimately how and why proof is taught in schools. And techniques from computer science for checking the validity of programs are being used to verify mathematical proofs. Chapters in this book include not only research reports and case studies, but also theoretical essays, reviews of the state of the art in selected areas, and historical studies. The authors are experts in the field.




Proofs and Fundamentals


Book Description

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.




Proof in Mathematics Education


Book Description

Research on teaching and learning proof and proving has expanded in recent decades. This reflects the growth of mathematics education research in general, but also an increased emphasis on proof in mathematics education.




Recent Books