Web Data Management


Book Description

The Internet and World Wide Web have revolutionized access to information. Users now store information across multiple platforms from personal computers to smartphones and websites. As a consequence, data management concepts, methods and techniques are increasingly focused on distribution concerns. Now that information largely resides in the network, so do the tools that process this information. This book explains the foundations of XML with a focus on data distribution. It covers the many facets of distributed data management on the Web, such as description logics, that are already emerging in today's data integration applications and herald tomorrow's semantic Web. It also introduces the machinery used to manipulate the unprecedented amount of data collected on the Web. Several 'Putting into Practice' chapters describe detailed practical applications of the technologies and techniques. The book will serve as an introduction to the new, global, information systems for Web professionals and master's level courses.




Web Data Management Practices


Book Description

"This book provides an understanding of major issues, current practices and the main ideas in the field of Web data management, helping readers to identify current and emerging issues, as well as future trends. The most important aspects are discussed: Web data mining, content management on the Web, Web applications and Web services"--Provided by publisher.




New Directions in Web Data Management 1


Book Description

This book addresses the major issues in the Web data management related to technologies and infrastructures, methodologies and techniques as well as applications and implementations. Emphasis is placed on Web engineering and technologies, Web graph managing, searching and querying and the importance of social Web.




Data on the Web


Book Description

Data model. Queries. Types. Sysems. A syntax for data. XML.. Query languages. Query languages for XML. Interpretation and advanced features. Typing semistructured data. Query processing. The lore system. Strudel. Database products supporting XML. Bibliography. Index. About the authors.




Web Data Management


Book Description

Existence of huge amounts of data on the Web has developed an undeferring need to locate right information at right time, as well as to integrating information effectively to provide a comprehensive source of relevant information. There is a need to develop efficient tools for analyzing and managing Web data, and efficiently managing Web information from the database perspective. The book proposes a data model called WHOM (Warehouse Object Model) to represent HTML and XML documents in the warehouse. It defines a set of web algebraic operators for building new web tables by extracting relevant data from the Web, as well as generating new tables from existing ones. These algebraic operators are used for change detection.




Fast and Scalable Cloud Data Management


Book Description

The unprecedented scale at which data is both produced and consumed today has generated a large demand for scalable data management solutions facilitating fast access from all over the world. As one consequence, a plethora of non-relational, distributed NoSQL database systems have risen in recent years and today’s data management system landscape has thus become somewhat hard to overlook. As another consequence, complex polyglot designs and elaborate schemes for data distribution and delivery have become the norm for building applications that connect users and organizations across the globe – but choosing the right combination of systems for a given use case has become increasingly difficult as well. To help practitioners stay on top of that challenge, this book presents a comprehensive overview and classification of the current system landscape in cloud data management as well as a survey of the state-of-the-art approaches for efficient data distribution and delivery to end-user devices. The topics covered thus range from NoSQL storage systems and polyglot architectures (backend) over distributed transactions and Web caching (network) to data access and rendering performance in the client (end-user). By distinguishing popular data management systems by data model, consistency guarantees, and other dimensions of interest, this book provides an abstract framework for reasoning about the overall design space and the individual positions claimed by each of the systems therein. Building on this classification, this book further presents an application-driven decision guidance tool that breaks the process of choosing a set of viable system candidates for a given application scenario down into a straightforward decision tree.




Intelligent Web Data Management: Software Architectures and Emerging Technologies


Book Description

This book presents some of the emerging techniques and technologies used to handle Web data management. Authors present novel software architectures and emerging technologies and then validate using experimental data and real world applications. The contents of this book are focused on four popular thematic categories of intelligent Web data management: cloud computing, social networking, monitoring and literature management. The Volume will be a valuable reference to researchers, students and practitioners in the field of Web data management, cloud computing, social networks using advanced intelligence tools.




DAMA-DMBOK


Book Description

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.




XML Data Mining: Models, Methods, and Applications


Book Description

The widespread use of XML in business and scientific databases has prompted the development of methodologies, techniques, and systems for effectively managing and analyzing XML data. This has increasingly attracted the attention of different research communities, including database, information retrieval, pattern recognition, and machine learning, from which several proposals have been offered to address problems in XML data management and knowledge discovery. XML Data Mining: Models, Methods, and Applications aims to collect knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods, and systems for XML data mining. This book addresses key issues and challenges in XML data mining, offering insights into the various existing solutions and best practices for modeling, processing, analyzing XML data, and for evaluating performance of XML data mining algorithms and systems.




Data Management for Researchers


Book Description

A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin