Why Are There Different Computer Languages?


Book Description

A computer is a complex piece of technology that has its own languages. Readers learn about these multiple languages in this informative and engaging text, which clearly explains select programming languages, such as Python and Scratch. Readers enrich their knowledge of essential computer skills and concepts in a way that's easily understandable. In addition to the age-appropriate text, creative illustrations, useful fact boxes, instructional graphic organizers, and educational diagrams are included to provide further depth to the text. Readers will find themselves captivated by the charming design as they are introduced to a foundational computer science concept.




Programming Languages: History and Fundamentals


Book Description

Monograph comprising fundamental information on the history and characteristics of approximately 120 programming languages for computer usage - covers technical aspects, language structure, etc. Bibliography at the end of each chapter.




History of Programming Languages


Book Description

History of Programming Languages presents information pertinent to the technical aspects of the language design and creation. This book provides an understanding of the processes of language design as related to the environment in which languages are developed and the knowledge base available to the originators. Organized into 14 sections encompassing 77 chapters, this book begins with an overview of the programming techniques to use to help the system produce efficient programs. This text then discusses how to use parentheses to help the system identify identical subexpressions within an expression and thereby eliminate their duplicate calculation. Other chapters consider FORTRAN programming techniques needed to produce optimum object programs. This book discusses as well the developments leading to ALGOL 60. The final chapter presents the biography of Adin D. Falkoff. This book is a valuable resource for graduate students, practitioners, historians, statisticians, mathematicians, programmers, as well as computer scientists and specialists.




Advanced Topics in Types and Programming Languages


Book Description

A thorough and accessible introduction to a range of key ideas in type systems for programming language. The study of type systems for programming languages now touches many areas of computer science, from language design and implementation to software engineering, network security, databases, and analysis of concurrent and distributed systems. This book offers accessible introductions to key ideas in the field, with contributions by experts on each topic. The topics covered include precise type analyses, which extend simple type systems to give them a better grip on the run time behavior of systems; type systems for low-level languages; applications of types to reasoning about computer programs; type theory as a framework for the design of sophisticated module systems; and advanced techniques in ML-style type inference. Advanced Topics in Types and Programming Languages builds on Benjamin Pierce's Types and Programming Languages (MIT Press, 2002); most of the chapters should be accessible to readers familiar with basic notations and techniques of operational semantics and type systems—the material covered in the first half of the earlier book. Advanced Topics in Types and Programming Languages can be used in the classroom and as a resource for professionals. Most chapters include exercises, ranging in difficulty from quick comprehension checks to challenging extensions, many with solutions.




Crafting Interpreters


Book Description

Despite using them every day, most software engineers know little about how programming languages are designed and implemented. For many, their only experience with that corner of computer science was a terrifying "compilers" class that they suffered through in undergrad and tried to blot from their memory as soon as they had scribbled their last NFA to DFA conversion on the final exam. That fearsome reputation belies a field that is rich with useful techniques and not so difficult as some of its practitioners might have you believe. A better understanding of how programming languages are built will make you a stronger software engineer and teach you concepts and data structures you'll use the rest of your coding days. You might even have fun. This book teaches you everything you need to know to implement a full-featured, efficient scripting language. You'll learn both high-level concepts around parsing and semantics and gritty details like bytecode representation and garbage collection. Your brain will light up with new ideas, and your hands will get dirty and calloused. Starting from main(), you will build a language that features rich syntax, dynamic typing, garbage collection, lexical scope, first-class functions, closures, classes, and inheritance. All packed into a few thousand lines of clean, fast code that you thoroughly understand because you wrote each one yourself.




Essentials of Programming Languages, third edition


Book Description

A new edition of a textbook that provides students with a deep, working understanding of the essential concepts of programming languages, completely revised, with significant new material. This book provides students with a deep, working understanding of the essential concepts of programming languages. Most of these essentials relate to the semantics, or meaning, of program elements, and the text uses interpreters (short programs that directly analyze an abstract representation of the program text) to express the semantics of many essential language elements in a way that is both clear and executable. The approach is both analytical and hands-on. The book provides views of programming languages using widely varying levels of abstraction, maintaining a clear connection between the high-level and low-level views. Exercises are a vital part of the text and are scattered throughout; the text explains the key concepts, and the exercises explore alternative designs and other issues. The complete Scheme code for all the interpreters and analyzers in the book can be found online through The MIT Press web site. For this new edition, each chapter has been revised and many new exercises have been added. Significant additions have been made to the text, including completely new chapters on modules and continuation-passing style. Essentials of Programming Languages can be used for both graduate and undergraduate courses, and for continuing education courses for programmers.




Design Concepts in Programming Languages


Book Description

Key ideas in programming language design and implementation explained using a simple and concise framework; a comprehensive introduction suitable for use as a textbook or a reference for researchers. Hundreds of programming languages are in use today—scripting languages for Internet commerce, user interface programming tools, spreadsheet macros, page format specification languages, and many others. Designing a programming language is a metaprogramming activity that bears certain similarities to programming in a regular language, with clarity and simplicity even more important than in ordinary programming. This comprehensive text uses a simple and concise framework to teach key ideas in programming language design and implementation. The book's unique approach is based on a family of syntactically simple pedagogical languages that allow students to explore programming language concepts systematically. It takes as premise and starting point the idea that when language behaviors become incredibly complex, the description of the behaviors must be incredibly simple. The book presents a set of tools (a mathematical metalanguage, abstract syntax, operational and denotational semantics) and uses it to explore a comprehensive set of programming language design dimensions, including dynamic semantics (naming, state, control, data), static semantics (types, type reconstruction, polymporphism, effects), and pragmatics (compilation, garbage collection). The many examples and exercises offer students opportunities to apply the foundational ideas explained in the text. Specialized topics and code that implements many of the algorithms and compilation methods in the book can be found on the book's Web site, along with such additional material as a section on concurrency and proofs of the theorems in the text. The book is suitable as a text for an introductory graduate or advanced undergraduate programming languages course; it can also serve as a reference for researchers and practitioners.




Concepts in Programming Languages


Book Description

A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.




Introduction to the Theory of Programming Languages


Book Description

The design and implementation of programming languages, from Fortran and Cobol to Caml and Java, has been one of the key developments in the management of ever more complex computerized systems. Introduction to the Theory of Programming Languages gives the reader the means to discover the tools to think, design, and implement these languages. It proposes a unified vision of the different formalisms that permit definition of a programming language: small steps operational semantics, big steps operational semantics, and denotational semantics, emphasising that all seek to define a relation between three objects: a program, an input value, and an output value. These formalisms are illustrated by presenting the semantics of some typical features of programming languages: functions, recursivity, assignments, records, objects, ... showing that the study of programming languages does not consist of studying languages one after another, but is organized around the features that are present in these various languages. The study of these features leads to the development of evaluators, interpreters and compilers, and also type inference algorithms, for small languages.




Types and Programming Languages


Book Description

A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.