Wideband RF Technologies and Antennas in Microwave Frequencies


Book Description

Presents wideband RF technologies and antennas in the microwave band and millimeter-wave band This book provides an up-to-date introduction to the technologies, design, and test procedures of RF components and systems at microwave frequencies. The book begins with a review of the elementary electromagnetics and antenna topics needed for students and engineers with no basic background in electromagnetic and antenna theory. These introductory chapters will allow readers to study and understand the basic design principles and features of RF and communication systems for communications and medical applications. After this introduction, the author examines MIC, MMIC, MEMS, and LTCC technologies. The text will also present information on meta-materials, design of microwave and mm wave systems, along with a look at microwave and mm wave receivers, transmitters and antennas. Discusses printed antennas for wireless communication systems and wearable antennas for communications and medical applications Presents design considerations with both computed and measured results of RF communication modules and CAD tools Includes end-of-chapter problems and exercises Wideband RF Technologies and Antennas in Microwave Frequencies is designed to help electrical engineers and undergraduate students to understand basic communication and RF systems definition, electromagnetic and antennas theory and fundamentals with minimum integral and differential equations. Albert Sabban, PhD, is a Senior Researcher and Lecturer at Ort Braude College Karmiel Israel. Dr. Sabban was RF and antenna specialist at communication and Biomedical Hi-tech Companies. He designed wearable compact antennas to medical systems. From 1976 to 2007, Dr. Albert Sabban worked as a senior R&D scientist and project leader in RAFAEL.




Wideband RF Technologies and Antennas in Microwave Frequencies


Book Description

Presents wideband RF technologies and antennas in the microwave band and millimeter-wave band This book provides an up-to-date introduction to the technologies, design, and test procedures of RF components and systems at microwave frequencies. The book begins with a review of the elementary electromagnetics and antenna topics needed for students and engineers with no basic background in electromagnetic and antenna theory. These introductory chapters will allow readers to study and understand the basic design principles and features of RF and communication systems for communications and medical applications. After this introduction, the author examines MIC, MMIC, MEMS, and LTCC technologies. The text will also present information on meta-materials, design of microwave and mm wave systems, along with a look at microwave and mm wave receivers, transmitters and antennas. Discusses printed antennas for wireless communication systems and wearable antennas for communications and medical applications Presents design considerations with both computed and measured results of RF communication modules and CAD tools Includes end-of-chapter problems and exercises Wideband RF Technologies and Antennas in Microwave Frequencies is designed to help electrical engineers and undergraduate students to understand basic communication and RF systems definition, electromagnetic and antennas theory and fundamentals with minimum integral and differential equations. Albert Sabban, PhD, is a Senior Researcher and Lecturer at Ort Braude College Karmiel Israel. Dr. Sabban was RF and antenna specialist at communication and Biomedical Hi-tech Companies. He designed wearable compact antennas to medical systems. From 1976 to 2007, Dr. Albert Sabban worked as a senior R&D scientist and project leader in RAFAEL.




Novel Wearable Antennas for Communication and Medical Systems


Book Description

Wearable antennas are meant to be incorporated as part of clothing or placed close to the body. Wearable antennas can be used in countless communication applications including tracking and navigation, medical applications, imaging and detection, RFID, mobile computing and public safety. The book "Novel Wearable Antennas for Communication and Medical Systems" discusses the challenges and technology to develop compact, efficient, wearable antennas. The book begins by presenting elementary communication, electromagnetics and antenna topics needed for engineers and students that do not have a background in design, principles, and features of antennas, printed antennas, wearable antennas, and compact antennas for communication and medical applications. Throughout the book each chapter also covers sufficient mathematical details, physical details and explanations to enable the reader to follow and understand the topics presented. New topics and design methods in the area of wearable antennas, metamaterial antennas, active printed antennas and fractal antennas for communication and medical systems are presented and discussed throughout the book. The book presents computed and measured results in the vicinity of the human body. The book also covers topics such as RF measurement techniques, measurement setups and design considerations. The antennas developed and analyzed in this book were designed and optimized by using 3D full-wave electromagnetics software.




Advances in Green Electronics Technologies in 2023


Book Description

Green computing involves developing, designing, engineering, producing, using, and disposing of computing modules and devices to reduce environmental hazards and pollution. Green computing technologies are crucial for protecting the planet from environmental hazards and pollution. This book presents new subjects and innovations in green computing technologies and in green computing and electronics industries. Chapters address such topics as green wearable sensors, variable renewable energy, managing energy consumption using the Internet of Things (IoT) and big data, using forest waste to produce biofuel and biodiesel, green computing in ophthalmological practice, and much more.




Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems


Book Description

Due to progress in the development of communication systems, it is now possible to develop low-cost wearable communication systems. A wearable antenna is meant to be a part of the clothing or close to the body and used for communication purposes, which include tracking and navigation, mobile computing and public safety. Examples include smartwatches (with integrated Bluetooth antennas), glasses (such as Google Glass with Wi-Fi and GPS antennas), GoPro action cameras (with Wi-Fi and Bluetooth antennas), etc. They are increasingly common in consumer electronics and for healthcare and medical applications. However, the development of compact, efficient wearable antennas is one of the major challenges in the development of wearable communication and medical systems. Technologies such as printed compact antennas and miniaturization techniques have been developed to create efficient, small wearable antennas which are the main objective of this book. Each chapter covers enough mathematical detail and explanations to enable electrical, electromagnetic and biomedical engineers and students and scientists from all areas to follow and understand the topics presented. New topics and design methods are presented for the first time in the area of wearable antennas, metamaterial antennas and fractal antennas. The book covers wearable antennas, RF measurements techniques and measured results in the vicinity of the human body, setups and design considerations. The wearable antennas and devices presented in this book were analyzed by using HFSS and ADS 3D full-wave electromagnetics software. Explores wearable medical systems and antennas Explains the design and development of wearable communication systems Explores wearable reconfigurable antennas for communication and medical applications Discusses new types of metamaterial antennas and artificial magnetic conductors (AMC) Reviews textile antennas Dr. Albert Sabban holds a PhD in Electrical Engineering from the University of Colorado at Boulder, USA (1991), and an MBA from the Faculty of Management, Haifa University, Israel (2005). He is currently a Senior Lecturer and researcher at the Department of Electrical and Electronic Engineering at Kinneret and Ort Braude Engineering Colleges.




Ultra-wideband RF System Engineering


Book Description

A comprehensive summary of the state of the art in Ultra Wideband system engineering, from components to system engineering aspects.




Advanced Radio Frequency Antennas for Modern Communication and Medical Systems


Book Description

The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array.




Innovations in Ultra-Wideband Technologies


Book Description

This book discusses innovation in ultra-wideband (UWB) technologies and systems. Divided into four sections, the volume introduces UWB technologies and RF modules, examines applications of these systems in areas such as medicine and sports, and discusses the importance of an accurate design of microwave modules and antennas.




RF and Microwave Passive and Active Technologies


Book Description

In the high frequency world, the passive technologies required to realize RF and microwave functionality present distinctive challenges. SAW filters, dielectric resonators, MEMS, and waveguide do not have counterparts in the low frequency or digital environment. Even when conventional lumped components can be used in high frequency applications, their behavior does not resemble that observed at lower frequencies. RF and Microwave Passive and Active Technologies provides detailed information about a wide range of component technologies used in modern RF and microwave systems. Updated chapters include new material on such technologies as MEMS, device packaging, surface acoustic wave (SAW) filters, bipolar junction and heterojunction transistors, and high mobility electron transistors (HMETs). The book also features a completely rewritten section on wide bandgap transistors.




Advanced Array Systems, Applications and RF Technologies


Book Description

Advanced Array Systems, Applications and RF Technologies adopts a holistic view of arrays used in radar, electronic warfare, communications, remote sensing and radioastronomy. Radio frequency (RF) and intermediate frequency (IF) signal processing is assuming a fundamental importance, owing to its increasing ability to multiply a system's capabilities in a cost-effective manner. This book comprehensively covers the important front-end RF subsystems of active phased arrays, so offering array designers new and exciting opportunities in signal processing. - Provides an up to date record of existing systems from different applications - Explores array systems under development - Bridges the gap between textbook coverage of idealized phased arrays and practical knowledge of working phased arrays - Recognises the significance of cost to the realization of phased arrays - Discusses future advances in the field that promise to deliver even more affordable arrays ['intelligent' or self-focussing/-cohering arrays]