Willmore Energy and Willmore Conjecture


Book Description

This book is the first monograph dedicated entirely to Willmore energy and Willmore surfaces as contemporary topics in differential geometry. While it focuses on Willmore energy and related conjectures, it also sits at the intersection between integrable systems, harmonic maps, Lie groups, calculus of variations, geometric analysis and applied differential geometry. Rather than reproducing published results, it presents new directions, developments and open problems. It addresses questions like: What is new in Willmore theory? Are there any new Willmore conjectures and open problems? What are the contemporary applications of Willmore surfaces? As well as mathematicians and physicists, this book is a useful tool for postdoctoral researchers and advanced graduate students working in this area.




Willmore Energy and Willmore Conjecture


Book Description

"This book is the first monograph dedicated entirely to Willmore energy and Willmore surfaces as contemporary topics in differential geometry. While it focuses on Willmore energy and related conjectures, it also sits at the intersection between integrable systems, harmonic maps, Lie groups, calculus of variations, geometric analysis and applied differential geometry. Rather than reproducing published results, it presents new directions, developments and open problems. It addresses questions like: What is new in Willmore theory? Are there any new Willmore conjectures and open problems? What are the contemporary applications of Willmore surfaces?As well as mathematicians and physicists, this book is a useful tool for postdoctoral researchers and advanced graduate students working in this area. "--Provided by publisher.




Topics in Modern Regularity Theory


Book Description

This book contains lecture notes of a series of courses on the regularity theory of partial differential equations and variational problems, held in Pisa and Parma in the years 2009 and 2010. The contributors, Nicola Fusco, Tristan Rivière and Reiner Schätzle, provide three updated and extensive introductions to various aspects of modern Regularity Theory concerning: mathematical modelling of thin films and related free discontinuity problems, analysis of conformally invariant variational problems via conservation laws, and the analysis of the Willmore functional. Each contribution begins with a very comprehensive introduction, and is aimed to take the reader from the introductory aspects of the subject to the most recent developments of the theory.




Constrained Willmore Surfaces


Book Description

From Bäcklund to Darboux: a comprehensive journey through the transformation theory of constrained Willmore surfaces, with applications to constant mean curvature surfaces.




What's Happening in the Mathematical Sciences


Book Description

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.




Geometric Analysis


Book Description

This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace–Beltrami operators.




Total Curvature in Riemannian Geometry


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Minimal Surfaces: Integrable Systems and Visualisation


Book Description

This book collects original peer-reviewed contributions to the conferences organised by the international research network “Minimal surfaces: Integrable Systems and Visualization” financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.




Disquisitiones Arithmeticae


Book Description

Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .




Do Not Erase


Book Description

A photographic exploration of mathematicians’ chalkboards “A mathematician, like a painter or poet, is a maker of patterns,” wrote the British mathematician G. H. Hardy. In Do Not Erase, photographer Jessica Wynne presents remarkable examples of this idea through images of mathematicians’ chalkboards. While other fields have replaced chalkboards with whiteboards and digital presentations, mathematicians remain loyal to chalk for puzzling out their ideas and communicating their research. Wynne offers more than one hundred stunning photographs of these chalkboards, gathered from a diverse group of mathematicians around the world. The photographs are accompanied by essays from each mathematician, reflecting on their work and processes. Together, pictures and words provide an illuminating meditation on the unique relationships among mathematics, art, and creativity. The mathematicians featured in this collection comprise exciting new voices alongside established figures, including Sun-Yung Alice Chang, Alain Connes, Misha Gromov, Andre Neves, Kasso Okoudjou, Peter Shor, Christina Sormani, Terence Tao, Claire Voisin, and many others. The companion essays give insights into how the chalkboard serves as a special medium for mathematical expression. The volume also includes an introduction by the author, an afterword by New Yorker writer Alec Wilkinson, and biographical information for each contributor. Do Not Erase is a testament to the myriad ways that mathematicians use their chalkboards to reveal the conceptual and visual beauty of their discipline—shapes, figures, formulas, and conjectures created through imagination, argument, and speculation.