Wind and Solar Power Systems


Book Description

The search for clean, renewable energy sources has yielded enormous growth and new developments in these technologies in a few short years, driving down costs and encouraging utilities in many nations, both developed and developing, to add and expand wind and solar power capacity. The first, best-selling edition of Wind and Solar Power Systems prov




Wind and Solar Power Systems


Book Description

This book provides technological and socio-economic coverage of renewable energy. It discusses wind power technologies, solar photovoltaic technologies, large-scale energy storage technologies, and ancillary power systems. In this new edition, the book addresses advancements that have been made in renewable energy: grid-connected power plants, power electronics converters, and multi-phase conversion systems. The text has been revised to include up-to-date material, statistics, and current technology trends. Three new chapters have been added to cover turbine generators, AC and DC wind systems, and recent advances solar power conversion. Discusses additional renewable energy sources, such as ocean, special turbines, etc. Covers system integration for solar and wind energy Presents emerging DC wind systems Includes coverage on turbine generators Updated sections on solar power conversion It offers students, practicing engineers, and researchers a comprehensive look at wind and solar power technologies. It is designed as a reference and can serve as a textbook for senior undergraduates in a one-semester course on renewable power or energy systems.




Biofuels, Solar and Wind as Renewable Energy Systems


Book Description

The petroleum age began about 150 years ago. Easily available energy has s- ported major advances in agriculture, industry, transportation, and indeed many diverse activities valued by humans. Now world petroleum and natural gas s- plies have peaked and their supplies will slowly decline over the next 40–50 years until depleted. Although small amounts of petroleum and natural gas will remain underground, it will be energetically and economically impossible to extract. In the United States, coal supplies could be available for as long as 40–50 years, depending on how rapidly coal is utilized as a replacement for petroleum and natural gas. Having been comfortable with the security provided by fossil energy, especially petroleum and natural gas, we appear to be slow to recognize the energy crisis in the U. S. and world. Serious energy conservation and research on viable renewable - ergy technologies are needed. Several renewable energy technologies already exist, but sound research is needed to improve their effectiveness and economics. Most of the renewable energy technologies are in uenced by geographic location and face problems of intermittent energy supply and storage. Most renewable technologies require extensive land; a few researchers have even suggested that one-half of all land biomass could be harvested in order to supply the U. S. with 30% of its liquid fuel! Some optimistic investigations of renewable energy have failed to recognize that only 0. 1% of the solar energy is captured annually in the U. S.




Wind Solar Hybrid Renewable Energy System


Book Description

This book provides a platform for scientists and engineers to comprehend the technologies of solar wind hybrid renewable energy systems and their applications. It describes the thermodynamic analysis of wind energy systems, and advanced monitoring, modeling, simulation, and control of wind turbines. Based on recent hybrid technologies considering wind and solar energy systems, this book also covers modeling, design, and optimization of wind solar energy systems in conjunction with grid-connected distribution energy management systems comprising wind photovoltaic (PV) models. In addition, solar thermochemical fuel generation topology and evaluation of PV wind hybrid energy for a small island are also included in this book. Since energy storage plays a vital role in renewable energy systems, another salient part of this book addresses the methodology for sizing hybrid battery-backed power generation systems in off-grid connected locations. Furthermore, the book proposes solutions for sustainable rural development via passive solar housing schemes, and the impacts of renewable energies in general, considering social, economic, and environmental factors. Because this book proposes solutions based on recent challenges in the area of hybrid renewable technologies, it is hoped that it will serve as a useful reference to readers who would like to be acquainted with new strategies of control and advanced technology regarding wind solar hybrid systems




Solar, Wind and Land


Book Description

The global demand for clean, renewable energy has rapidly expanded in recent years and will likely continue to escalate in the decades to come. Wind and solar energy systems often require large quantities of land and airspace, so their growing presence is generating a diverse array of new and challenging land use conflicts. Wind turbines can create noise, disrupt views or radar systems, and threaten bird populations. Solar energy projects can cause glare effects, impact pristine wilderness areas, and deplete water resources. Developers must successfully navigate through these and myriad other land use conflicts to complete any renewable energy project. Policymakers are increasingly confronted with disputes over these issues and are searching for rules to effectively govern them. Tailoring innovative policies to address the unique conflicts that arise in the context of renewable energy development is crucial to ensuring that the law facilitates rather than impedes the continued growth of this important industry. This book describes and analyses the property and land use policy questions that most commonly arise in renewable energy development. Although it focuses primarily on issues that have arisen within the United States, the book’s discussions of international policy differences and critiques of existing approaches make it a valuable resource for anyone exploring these issues in a professional setting anywhere in the world.




Energy Harvesting


Book Description

Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.




Renewable Energy Systems


Book Description

Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy - Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results - Includes new circuits and systems, helping researchers solve many nonlinear problems




Resilient Energy Systems


Book Description

Renewable energy systems are playing an important role in the current discourse on energy security and sustainability. Scientific, engineering and economic solutions are adopted, and their is a constant effort to understand mechanisms and options to allow a faster penetration of renewable systems in the current energy mix and energy market. Readers of this book will have access to information, engineering design and economic solutions for harvesting local and regional energy potential by means of solar, wind, hydro resources. It will enable graduate students, researchers, promoters of sustainable energy technologies,consulting engineering experts, knowledgeable public to understand the solutions, methods, techniques suitable for different phases of design and implementation of a large selection of renewable energy technologies, and to identify their sustainability in application and policy.




Electric Renewable Energy Systems


Book Description

- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells




Renewable energy conversion systems


Book Description

Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems