Wind Engineering 1983 3B


Book Description

Wind Engineering 1983, Part B contains the proceedings of the Sixth International Conference on Wind Engineering, held in Gold Coast, Australia, on March 21-25, 1983 and in Auckland, New Zealand, on April 6-7, 1983 under the auspices of the International Association for Wind Engineering. The conference provided a forum for discussing topics related to wind energy and wind engineering, from bluff body aerodynamics and mathematical models of wind loading to full-scale measurement and modeling of buildings and other structures. Comprised of 37 chapters, this volume begins with a description of two probabilistic wind load models used in assessing the safety indices of structural members in cyclonic and non-cyclonic regions of Australia. The discussion then turns to the effect of uncertainties in wind load estimation on reliability assessments; wind tunnel test program and risk analysis for structural design; and application of wind engineering to low-rise housing. Subsequent sections focus on wind loading of chimneys and cooling towers, bridges, cables and transmission lines, and offshore platforms. The fundamentals of bluff body aerodynamics are also examined, along with mathematical models of wind loading. This monograph will be of interest to students, practitioners, and researchers concerned with wind energy and wind engineering.




Wind Engineering 1983 3A


Book Description

Wind Engineering 1983, Part A contains the proceedings of the Sixth International Conference on Wind Engineering, held in Gold Coast, Australia, on March 21-25, 1983 and in Auckland, New Zealand, on April 6-7, 1983 under the auspices of the International Association for Wind Engineering. The conference provided a forum for discussing topics related to wind energy and wind engineering, from wind characteristics and wind loading to full-scale measurement and modeling of buildings and other structures. Comprised of 36 chapters, this volume begins with an assessment of the wider application of reliability principles in the treatment of wind loading, paying particular attention to the influence of wind direction and the role of full-scale testing in reducing uncertainty. The reader is then introduced to wind characteristics, with emphasis on strong winds and tropical cyclones; wind loading of tall buildings and low-rise structures; and instrumentation and experimental techniques for wind loading. The base balance technique for the determination of dynamic wind loads is described, along with a detailed design method for pneumatic tubing systems and a digital system for the measurement of wind effects on large structures. The final two chapters deal with active modeling of large-scale turbulence and selection of local peak pressure coefficients for wind tunnel studies of buildings. This monograph will be of interest to students, practitioners, and researchers concerned with wind energy and wind engineering.




Wind Engineering 1983 3C


Book Description

Wind Engineering 1983, Part C contains the proceedings of the Sixth International Conference on Wind Engineering, held in Gold Coast, Australia, on March 21-25, 1983 and in Auckland, New Zealand, on April 6-7, 1983 under the auspices of the International Association for Wind Engineering. The conference provided a forum for discussing topics related to wind energy and wind engineering, from internal pressures and wind-induced heat losses to wind characteristics, wind power systems, and the dispersion of gaseous pollutants. Comprised of 29 chapters, this volume begins with a detailed treatment of theory and experiment regarding the response characteristics of air pressure inside double-glazed windows. The effects of surrounding buildings on wind pressure distributions and ventilative heat losses for a single-family house are then examined, along with the nonlinearity of pressure differentials induced by wind and mechanical ventilation. Subsequent sections focus on topographic modeling of the dispersion of gaseous pollutants; the effect of wind environment on shelter; the effect of wind characteristics on structures; wind flow over hills and ridges; and wind power systems. This monograph will be of interest to students, practitioners, and researchers concerned with wind energy and wind engineering.
















Handbook of Wind Energy Aerodynamics


Book Description

This handbook provides both a comprehensive overview and deep insights on the state-of-the-art methods used in wind turbine aerodynamics, as well as their advantages and limits. The focus of this work is specifically on wind turbines, where the aerodynamics are different from that of other fields due to the turbulent wind fields they face and the resultant differences in structural requirements. It gives a complete picture of research in the field, taking into account the different approaches which are applied. This book would be useful to professionals, academics, researchers and students working in the field.







Solar Engineering of Thermal Processes, Photovoltaics and Wind


Book Description

The bible of solar engineering that translates solar energy theory to practice, revised and updated The updated Fifth Edition of Solar Engineering of Thermal Processes, Photovoltaics and Wind contains the fundamentals of solar energy and explains how we get energy from the sun. The authors—noted experts on the topic—provide an introduction to the technologies that harvest, store, and deliver solar energy, such as photovoltaics, solar heaters, and cells. The book also explores the applications of solar technologies and shows how they are applied in various sectors of the marketplace. The revised Fifth Edition offers guidance for using two key engineering software applications, Engineering Equation Solver (EES) and System Advisor Model (SAM). These applications aid in solving complex equations quickly and help with performing long-term or annual simulations. The new edition includes all-new examples, performance data, and photos of current solar energy applications. In addition, the chapter on concentrating solar power is updated and expanded. The practice problems in the Appendix are also updated, and instructors have access to an updated print Solutions Manual. This important book: • Covers all aspects of solar engineering from basic theory to the design of solar technology • Offers in-depth guidance and demonstrations of Engineering Equation Solver (EES) and System Advisor Model (SAM) software • Contains all-new examples, performance data, and photos of solar energy systems today • Includes updated simulation problems and a solutions manual for instructors Written for students and practicing professionals in power and energy industries as well as those in research and government labs, Solar Engineering of Thermal Processes, Fifth Edition continues to be the leading solar engineering text and reference.