Wind Issues in the Design of Buildings


Book Description

Wind Issues in the Design of Buildings explains the ways that structural designers accommodate the impact of extreme wind events on the built environment. By studying the flow and pressure fields around buildings, architects and engineers can identify and select the best strategies for ensuring that a building will resist the loads due to high winds, maintaining pleasant conditions in outdoor spaces, assessing natural ventilation potential, and seeing that any exhaust fumes are dispersed adequately. This volume identifies wind characteristics and describes the effects of winds generated by hurricanes, tornadoes, and thunderstorms. It explains the internal and external pressures on a building's cladding (skin) and the effects of wind-borne debris. A building's response to the structural loads caused by wind is outlined, along with techniques for resisting wind. A chapter is devoted to wind tunnels and physical modeling to predict structural loads, cladding response, pedestrian experience, topographic effects, and snow deposition. A section of frequently asked questions, a glossary, and recommended reading make this material in this volume accessible to students and nontechnical members of project teams. Structural engineers and architects will find this book a useful aide in explaining wind-related issues to clients, builders, building officials, and owners. Students in structural and architectural engineering will welcome the clear, concise presentation of an important component of structural design.




Winds Effects on Structures


Book Description

The damage caused by recent hurricanes has highlighted the interest in the construction of wind resistant structures. This book addresses developments in the field, and provides engineers with up-to-date methods and standards for construction




Building Design for Wind Forces: A Guide to ASCE 7-16 Standards


Book Description

Expert coverage of ASCE 7-16–compliant, wind-resistant engineering methods for safer, sounder low-rise and standard multi-story buildingsUsing the hands-on information contained in this comprehensive engineering guide you will be able to design and construct safer buildings that will better withstand extreme wind forces. Written by a recognized structural design expert, the book explains the general concepts and principles involved in the design of buildings and structures for wind forces. Structural systems used to resist wind forces are outlined and explained, in the context of both low-rise and high-rise buildings. Building Design for Wind Forces provides easy-to-follow summaries of complex ASCE 7-16 wind load provisions and shows how to apply the corresponding design procedures using practical examples. A detailed discussion of typical structural damage caused by extreme wind events such as hurricanes and tornadoes is presented along with design recommendations. Current wind engineering activities and recent research developments are discussed, and a general overview of wind tunnel procedures and an introduction to the concept of database-assisted design (DAD) is provided. Building Design for Wind Forces covers:•Wind forces and wind effects on buildings and structures•Wind load provisions of the ASCE 7-16 standard•Damage to structures caused by extreme wind events•Wind engineering activities and research trends•Structural systems for lateral loads•Tall buildings•Wind design procedures and wind load parameters•Wind loads on the Main Wind Force Resisting System (MWFRS)•Wind loads on Components and Cladding (C&C)•Wind loads on building appurtenances and other structures•Wind tunnels and the wind tunnel procedure•Database-assisted design (DAD)




Wind Effects on Structures


Book Description

Provides structural engineers with the knowledge and practical tools needed to perform structural designs for wind that incorporate major technological, conceptual, analytical and computational advances achieved in the last two decades. With clear explanations and documentation of the concepts, methods, algorithms, and software available for accounting for wind loads in structural design, it also describes the wind engineer's contributions in sufficient detail that they can be effectively scrutinized by the structural engineer in charge of the design. Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is organized in four sections. The first covers atmospheric flows, extreme wind speeds, and bluff body aerodynamics. The second examines the design of buildings, and includes chapters on aerodynamic loads; dynamic and effective wind-induced loads; wind effects with specified MRIs; low-rise buildings; tall buildings; and more. The third part is devoted to aeroelastic effects, and covers both fundamentals and applications. The last part considers other structures and special topics such as trussed frameworks; offshore structures; and tornado effects. Offering readers the knowledge and practical tools needed to develop structural designs for wind loadings, this book: Points out significant limitations in the design of buildings based on such techniques as the high-frequency force balance Discusses powerful algorithms, tools, and software needed for the effective design for wind, and provides numerous examples of application Discusses techniques applicable to structures other than buildings, including stacks and suspended-span bridges Features several appendices on Elements of Probability and Statistics; Peaks-over-Threshold Poisson-Process Procedure for Estimating Peaks; estimates of the WTC Towers’ Response to Wind and their shortcomings; and more Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is an excellent text for structural engineers, wind engineers, and structural engineering students and faculty.




Wind Environment Around Buildings


Book Description

Copies are supplied by TSO's on-demand publishing service




Wind Tunnel Testing for Buildings and Other Structures


Book Description

ASCE/SEI 49-21 provides the minimum requirements for conducting and interpreting wind tunnel tests to determine wind loads on buildings and other structures.




Design of Buildings for Wind


Book Description

ASCE 7 is the US standard for identifying minimum design loads for buildings and other structures. ASCE 7 covers many load types, of which wind is one. The purpose of this book is to provide structural and architectural engineers with the practical state-of-the-art knowledge and tools needed for designing and retrofitting buildings for wind loads. The book will also cover wind-induced loss estimation. This new edition include a guide to the thoroughly revised, 2010 version of the ASCE 7 Standard provisions for wind loads; incorporate major advances achieved in recent years in the design of tall buildings for wind; present material on retrofitting and loss estimation; and improve the presentation of the material to increase its usefulness to structural engineers. Key features: New focus on tall buildings helps make the analysis and design guidance easier and less complex. Covers the new simplified design methods of ASCE 7-10, guiding designers to clearly understand the spirit and letter of the provisions and use the design methods with confidence and ease. Includes new coverage of retrofitting for wind load resistance and loss estimation from hurricane winds. Thoroughly revised and updated to conform with current practice and research.




Wind-induced Motion of Tall Buildings


Book Description

This state-of-the-art report describes various facets of the human response to wind-induced motion in tall buildings and identifies design strategies to mitigate the effects of such motion on building occupants.




Design of Wind and Earthquake Resistant Reinforced Concrete Buildings


Book Description

Design of Wind and Earthquake Resistant Reinforced Concrete Buildings explains wind and seismic design issues of RCC buildings in brief and provides design examples based on recommendations of latest IS codes essential for industrial design. Intricate issues of RCC design are discussed which are supplemented by real-life examples. Guidelines are presented for evaluating the acceptability of wind-induced motions of tall buildings. Design methodologies for structures to deform well beyond their elastic limits, which is essential under seismic excitation, have been discussed in detail. Comparative discussion including typical design examples using recent British, Euro and American codes is also included. Features: Explains wind and earthquake resistant design issues, balancing theoretical aspects and design implications, in detail Discusses issues for designing the wind and earthquake resistant RCC structures Provides comprehensive understanding, analysis, design and detailing of the structures Includes a detailed discussion on IS code related to wind and earthquake resistant design and its comparison with Euro, British and American codes Contains architectural drawings and structural drawings The book is aimed at researchers, professionals, graduate students in wind and earthquake engineering, design of RCC structures, modelling and analysis of structures, civil/infrastructure engineering.




Structural Building Design


Book Description

Structural Building Design: Wind and Flood Loads is based upon the author’s extensive experience in South Florida as a structural designer, building code official, and an expert witness. He has more than 30 years of engineering experience in the United States, Dubai, and India. The book illustrates the use of ASCE standards ASCE 7-16 and ASCE 24-14 in the calculations of wind and flood loads on building structures. Features: Discussions of the evolution of the ASCE 7 standards Includes discussion of wind load guidance in the International Building Code Examines the Building Envelope Product Approval System Includes numerous solved real-life examples of wind-related issues Presents numerous solved real-life examples demonstrating various flood load concepts