Lignocellulosic Fibers and Wood Handbook


Book Description

This book will focus on lignocellulosic fibres as a raw material for several applications. It will start with wood chemistry and morphology. Then, some fibre isolation processes will be given, before moving to composites, panel and paper manufacturing, characterization and aging.







Natural Fibre Composites


Book Description

The use of natural fibres as reinforcements in composites has grown in importance in recent years. Natural Fibre Composites summarises the wealth of significant recent research in this area. Chapters in part one introduce and explore the structure, properties, processing, and applications of natural fibre reinforcements, including those made from wood and cellulosic fibres. Part two describes and illustrates the processing of natural fibre composites. Chapters discuss ethical practices in the processing of green composites, manufacturing methods and compression and injection molding techniques for natural fibre composites, and thermoset matrix natural fibre-reinforced composites. Part three highlights and interprets the testing and properties of natural fibre composites including, non-destructive and high strain rate testing. The performance of natural fibre composites is examined under dynamic loading, the response of natural fibre composites to impact damage is appraised, and the response of natural fibre composites in a marine environment is assessed. Natural Fibre Composites is a technical guide for professionals requiring an understanding of natural fibre composite materials. It offers reviews, applications and evaluations of the subject for researchers and engineers. - Introduces and explores the structure, properties, processing, and applications of natural fibre reinforcements, including those made from wood and cellulosic fibres - Highlights and interprets the testing and properties of natural fibre composites, including non-destructive and high strain rate testing - Examines performance of natural fibre composites under dynamic loading, the response of natural fibre composites to impact damage, and the response of natural fibre composites in a marine environment




Fiber Atlas


Book Description

This richly-illustrated book presents the information necessary for fiber analysis in the field of pulp and paper. A discussion of raw-material structure and the features used for species identification in pulp is followed up by the description of 117 fiber species. Of these, 83 are wood fibers and 34 are of nonwood origin. The tree species range across all five continents, 29 from Eurasia, 38 from North America and 16 from the southern hemisphere and the tropics. Informative micrographs, identification tables, and distribution maps aid species differentiation, making this atlas ideal for everyone interested in fiber identification.




Advanced High Strength Natural Fibre Composites in Construction


Book Description

Advanced High Strength Natural Fibre Composites in Construction provides the basic framework and knowledge required for the efficient and sustainable use of natural fiber composites as a structural and building material, along with information on the ongoing efforts to improve the efficiency of use and competitiveness of these composites. Areas of particular interest include understanding the nature and behavior of raw materials and their functional contributions to the advanced architectures of high strength composites (Part 1), discussing both traditional and novel manufacturing technologies for various advanced natural fiber construction materials (Part 2), examining the parameters and performance of the composites (Part 3), and finally commenting on the associated codes, standards, and sustainable development of advanced high strength natural fiber composites for construction. This exposition will be based on well understood environmental science as it applies to construction (Part 4). The book is aimed at academics, research scholars, and engineers, and will serve as a most valuable text or reference book that challenges undergraduate and postgraduate students to think beyond standard practices when designing and creating novel construction materials. - Presents the first comprehensive review on the efficient and sustainable use of natural fiber composites in construction and building materials - Contains detailed information on the structure, chemical composition, and physical and mechanical properties of natural fibers - Covers both traditional and novel manufacturing technologies for high strength natural fiber composites - Includes material parameters and performance in use, as well as associated codes, standards, and applied case studies - Presents contributions from leading international experts in the field




Touching Light


Book Description

You have inside you a cloak of gossamer connective tissue that surrounds and supports everything and functions like fiber optics. This tissue is called fascia. In these pages, myofascial release expert Ronelle Wood translates the scientific language for the chemistry, function, and physiology of fascia, shares her hands-on expertise, and explains in layman's terms how our fascia affects us all in everyday life and its potential as a prime source of health and rejuvenation. Gay Hendricks says in his foreword: "I've been blessed to know many great healers and teachers over my forty-five years in the field of transformation; Ronelle is right at the top of the list of masterful practitioners I've known." Read this book and you'll no longer perceive your body as a misbehaving slave to be punished into submission, but as a communicative partner-always supporting you.




Tribology of Natural Fiber Polymer Composites


Book Description

Environmental concerns are driving demand for bio-degradable materials such as plant-based natural fiber reinforced polymer composites. These composites are fast replacing conventional materials in many applications, especially in automobiles, where tribology (friction, lubrication and wear) is important. This book covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and, in particular, tribological properties. Chapter 1 discusses sources of natural fibers, their extraction and surface modification. It also reviews the thermal, structural, mechanical, spectroscopic and morphological properties of unmodified and chemically modified natural fibers such as sisal, jute, wood, bamboo and cotton together with their potential applications. Chapter 2 gives a brief introduction to the tribology of polymer composites and the role of fiber reinforcement and fillers in modifying their tribological properties. Further chapters discuss the chemical composition, physical structure, mechanical properties and tribological behaviour of polymer composites reinforced with sisal, jute, cotton and bamboo fibers. The tribological behaviour of wood polymer composites (WPCs) is also discussed. Tribology of natural fibre polymer composites is a useful reference guide for engineers, scientific and technical personnel involved in the development of natural fiber composites. In particular it will give an insight into mechanical properties and failure mechanisms in situations where wear, lubrication and friction are a problem. Examines the availability and processing of natural fiber composites and their structural, thermal, mechanical and tribological properties Explores sources of natural fibers, their extraction and surface modification as well as properties of chemically modified natural fibers Provides an overview of the tribology of polymer composites and the role of fiber reinforcement and filters in modifying tribological composites




Eco-Friendly Adhesives for Wood and Natural Fiber Composites


Book Description

This book provides an overview of eco-friendly resins and their composite materials covering their synthesis, sources, structures and properties for different industrial applications to support the ongoing research and development in eco-friendly and renewable commercial products. It provides comparative discussions on the properties of eco-friendly resins with other polymer composites. It is a useful reference on bio-based eco-friendly polymer resins, wood-based composites, natural fibers and biomass materials for the polymer scientists, engineers and material scientists.




APA Engineered Wood Handbook


Book Description

This unique handbook shows you what you can do with glued engineered wood composites in both residential and nonresidential building construction applications -- products that not only perform better than traditional solid wood products, but also reduce the pressure on available wood fiber resources. The APA Engineered Wood Handbook provides standards and guidelines for getting the most from some of the most exciting wood based materials available in construction today. Book jacket.




Wood Properties and Processing


Book Description

Wood-based materials are CO2-neutral, renewable, and considered to be environmentally friendly. The huge variety of wood species and wood-based composites allows a wide scope of creative and esthetic alternatives to materials with higher environmental impacts during production, use and disposal. Quality of wood is influenced by the genetic and environmental factors. One of the emerging uses of wood are building and construction applications. Modern building and construction practices would not be possible without use of wood or wood-based composites. The use of composites enables using wood of lower quality for the production of materials with engineered properties for specific target applications. Even more, the utilization of such reinforcing particles as carbon nanotubes and nanocellulose enables development of a new generation of composites with even better properties. The positive aspect of decomposability of waste wood can turn into the opposite when wood or wood-based materials are exposed to weathering, moisture oscillations, different discolorations, and degrading organisms. Protective measures are therefore unavoidable for many outdoor applications. Resistance of wood against different aging factors is always a combined effect of toxic or inhibiting ingredients on the one hand, and of structural, anatomical, or chemical ways of excluding moisture on the other.