Word Sense Disambiguation


Book Description

This is the first comprehensive book to cover all aspects of word sense disambiguation. It covers major algorithms, techniques, performance measures, results, philosophical issues and applications. The text synthesizes past and current research across the field, and helps developers grasp which techniques will best apply to their particular application, how to build and evaluate systems, and what performance to expect. An accompanying Website extends the effectiveness of the text.




Word Sense Disambiguation


Book Description

This is the first comprehensive book to cover all aspects of word sense disambiguation. It covers major algorithms, techniques, performance measures, results, philosophical issues and applications. The text synthesizes past and current research across the field, and helps developers grasp which techniques will best apply to their particular application, how to build and evaluate systems, and what performance to expect. An accompanying Website extends the effectiveness of the text.




Foundations of Statistical Natural Language Processing


Book Description

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.




Speech & Language Processing


Book Description




Proceedings of Second Doctoral Symposium on Computational Intelligence


Book Description

This book features high-quality research papers presented at Second Doctoral Symposium on Computational Intelligence (DoSCI-2021), organized by Institute of Engineering and Technology (IET), AKTU, Lucknow, India, on 6 March 2021. This book discusses the topics such as computational intelligence, artificial intelligence, deep learning, evolutionary algorithms, swarm intelligence, fuzzy sets and vague sets, rough set theoretic approaches, quantum-inspired computational intelligence, hybrid computational intelligence, machine learning, computer vision, soft computing, distributed computing, parallel and grid computing, cloud computing, high-performance computing, biomedical computing, decision support and decision making.




Semantic Interpretation and the Resolution of Ambiguity


Book Description

Semantic interpretation and the resolution of ambiguity presents an important advance in computer understanding of natural language. While parsing techniques have been greatly improved in recent years, the approach to semantics has generally improved in recent years, the approach to semantics has generally been ad hoc and had little theoretical basis. Graeme Hirst offers a new, theoretically motivated foundation for conceptual analysis by computer, and shows how this framework facilitates the resolution of lexical and syntactic ambiguities. His approach is interdisciplinary, drawing on research in computational linguistics, artificial intelligence, montague semantics, and cognitive psychology.




Emerging Applications of Natural Language Processing: Concepts and New Research


Book Description

"This book provides pertinent and vital information that researchers, postgraduate, doctoral students, and practitioners are seeking for learning about the latest discoveries and advances in NLP methodologies and applications of NLP"--Provided by publisher.




Natural Language Processing Using Very Large Corpora


Book Description

ABOUT THIS BOOK This book is intended for researchers who want to keep abreast of cur rent developments in corpus-based natural language processing. It is not meant as an introduction to this field; for readers who need one, several entry-level texts are available, including those of (Church and Mercer, 1993; Charniak, 1993; Jelinek, 1997). This book captures the essence of a series of highly successful work shops held in the last few years. The response in 1993 to the initial Workshop on Very Large Corpora (Columbus, Ohio) was so enthusias tic that we were encouraged to make it an annual event. The following year, we staged the Second Workshop on Very Large Corpora in Ky oto. As a way of managing these annual workshops, we then decided to register a special interest group called SIGDAT with the Association for Computational Linguistics. The demand for international forums on corpus-based NLP has been expanding so rapidly that in 1995 SIGDAT was led to organize not only the Third Workshop on Very Large Corpora (Cambridge, Mass. ) but also a complementary workshop entitled From Texts to Tags (Dublin). Obviously, the success of these workshops was in some measure a re flection of the growing popularity of corpus-based methods in the NLP community. But first and foremost, it was due to the fact that the work shops attracted so many high-quality papers.




Linked Lexical Knowledge Bases


Book Description

This book conveys the fundamentals of Linked Lexical Knowledge Bases (LLKB) and sheds light on their different aspects from various perspectives, focusing on their construction and use in natural language processing (NLP). It characterizes a wide range of both expert-based and collaboratively constructed lexical knowledge bases. Only basic familiarity with NLP is required and this book has been written for both students and researchers in NLP and related fields who are interested in knowledge-based approaches to language analysis and their applications. Lexical Knowledge Bases (LKBs) are indispensable in many areas of natural language processing, as they encode human knowledge of language in machine readable form, and as such, they are required as a reference when machines attempt to interpret natural language in accordance with human perception. In recent years, numerous research efforts have led to the insight that to make the best use of available knowledge, the orchestrated exploitation of different LKBs is necessary. This allows us to not only extend the range of covered words and senses, but also gives us the opportunity to obtain a richer knowledge representation when a particular meaning of a word is covered in more than one resource. Examples where such an orchestrated usage of LKBs proved beneficial include word sense disambiguation, semantic role labeling, semantic parsing, and text classification. This book presents different kinds of automatic, manual, and collaborative linkings between LKBs. A special chapter is devoted to the linking algorithms employing text-based, graph-based, and joint modeling methods. Following this, it presents a set of higher-level NLP tasks and algorithms, effectively utilizing the knowledge in LLKBs. Among them, you will find advanced methods, e.g., distant supervision, or continuous vector space models of knowledge bases (KB), that have become widely used at the time of this book's writing. Finally, multilingual applications of LLKB's, such as cross-lingual semantic relatedness and computer-aided translation are discussed, as well as tools and interfaces for exploring LLKBs, followed by conclusions and future research directions.




Semisupervised Learning for Computational Linguistics


Book Description

The rapid advancement in the theoretical understanding of statistical and machine learning methods for semisupervised learning has made it difficult for nonspecialists to keep up to date in the field. Providing a broad, accessible treatment of the theory as well as linguistic applications, Semisupervised Learning for Computational Linguistics offer