A First Course in the Calculus of Variations


Book Description

This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.




Qualitative Methods in Nonlinear Dynamics


Book Description

"Presents new approaches to qualitative analysis of continuous, discreteptime, and impulsive nonlinear systems via Liapunov matrix-valued functions that introduce more effective tests for solving problems of estimating the domains of asymptotic stability."