World Scientific Reference Of Hybrid Materials (In 3 Volumes)


Book Description

The World Scientific Reference of Hybrid Materials is a set of 3 volumes, which covers the fascinating area of materials science at the intersection between purely polymeric, organic or inorganic materials. The rapidly developing research on hybrid materials is largely driven by the steadily increasing need of multifunctional materials in various branches of technology. However, much of the research is also driven by the curiosity of the researchers and the long lasting wish to merge the most beneficial properties of the various materials into one. The flexibility of polymers could, for example, be merged with the electronic conductivity of metals or the mechanical resistance of ceramics, which will be of great value for the industries.This reference covers the areas of synthesis of such hybrid materials, which take benefit from each of the consisting ingredients, and overviews some of the emerging applications based on the materials. Much of the current research is still in its infancy, but hybrid materials are already now considered to be the key enabler for important future developments, for example flexible electronics. With this perspective, this reference aims at giving the general public an overview over the topics of relevance in this field, but also attracting new researchers to this intriguing scientific area.




World Scientific Reference of Hybrid Materials


Book Description

"The World Scientific Reference of Hybrid Materials is a set of 3 volumes, which covers the fascinating area of materials science at the intersection between purely polymeric, organic or inorganic materials. The rapidly developing research on hybrid materials is largely driven by the steadily increasing need of multifunctional materials in various branches of technology. However, much of the research is also driven by the curiosity of the researchers and the long lasting wish to merge the most beneficial properties of the various materials into one. The flexibility of polymers could, for example, be merged with the electronic conductivity of metals or the mechanical resistance of ceramics, which will be of great value for the industries. This reference covers the areas of synthesis of such hybrid materials, which take benefit from each of the consisting ingredients, and overviews some of the emerging applications based on the materials. Much of the current research is still in its infancy, but hybrid materials are already now considered to be the key enabler for important future developments, for example flexible electronics. With this perspective, this reference aims at giving the general public an overview over the topics of relevance in this field, but also attracting new researchers to this intriguing scientific area."-




World Scientific Reference Of Water Science, The (In 3 Volumes)


Book Description

Water is an indispensable resource for our society. Essential to sustaining life and economic prosperity, water is also the basic component for manufacturing almost everything to keep society alive, including energy, food, clothing, cars, and electronics, among many other examples. It is, thus, an integral part of our lives beyond simply quenching our thirst. In addition, our future economy and security highly depend upon the availability of clean water. Yet given its critical importance, there is a limited supply of renewable freshwater across the globe and there is no substitute. Global population and economic growth, urbanization, and climate change further exacerbate the increasing stress on freshwater supplies. As such, society urgently needs to find the scientific and engineering solutions to more efficiently manage our precious water resources. The volumes of this multi-volume reference cover the latest scientific advancements and solutions in managing and treating this crucial resource.Related Link(s)




World Scientific Reference On Plasmonic Nanomaterials: Principles, Design And Bio-applications (In 5 Volumes)


Book Description

World Scientific Reference on Plasmonic Nanomaterials: Principles, Design and Bio-applications is a book collection that encompasses multiple aspects of the exciting and timely field of nanoplasmonics, under the coordination of international plasmonic nanomaterials expert, Dr Luis Liz-Marzán. Plasmonics has a long history, from stained glass in ancient cathedrals, through pioneering investigations by Michael Faraday, all the way into the nanotechnology era, where it blossomed into an extremely active field of research with potential applications in a wide variety of technologies.Given the breadth of the materials, phenomena and applications related to plasmonics, this Reference Set offers a collection of chapters within dedicated volumes, focusing on the description of selected phenomena, with an emphasis in chemistry as an enabling tool for the fabrication of, often sophisticated, plasmonic nanoarchitectures and biomedicine as the target application.Basic principles of surface plasmon resonances are described, as well as those mechanisms related to related phenomena such as surface-enhanced spectroscopies or plasmonic chirality. Under the guidance of theoretical models, wet chemistry methods have been implemented toward the synthesis of a wide variety of nanoparticles with different compositions and tailored morphology. But often the optimal nanoarchitecture requires post-synthesis treatments, including functionalization of nanoparticle surfaces, application of external stimuli toward self-assembly into well-defined supraparticle structures and so-called supercrystals. All such nanomaterials can find applications in various biomedical aspects, most often in relation to diagnosis, through either the detection of disease biomarkers at extremely low concentrations or the design of bioimaging methods for in vivo monitoring. Additionally, novel therapeutic tools can also profit from plasmonic nanomaterials, such as photothermal therapy or nanocatalysis.The reference set thus offers comprehensive information of an extremely active subset within the world of plasmonic nanomaterials and their applications, which aims at not just collecting existing knowledge but also promoting further research and technology transfer into the market and the clinic.




Biologically-responsive Hybrid Biomaterials


Book Description

conjugate biomaterials have profoundly impacted the medical field. --




World Scientific Reference On Spin In Organics (In 4 Volumes)


Book Description

This reference work on Spin in Organics contains four volumes dedicated to spin injection, spin transport, spin pumping, organic magnetic field effect, and molecular spintronics. The field of Organic Spintronics has accelerated and matured in the last dozen years with the realization of an organic spin-valve (in 2004) and magneto-resistance and magneto-electroluminescence in organic optoelectronic devices (2006).The book series is comprehensive in that it summarizes all aspects of Organic Spintronics to date. The first two volumes deal with spin injection, spin transport, spin manipulation and spin pumping into organic semiconductors. The main device that is thoroughly discussed here is the organic spin-valve, where spinterface states at the interface between the organic semiconductor and the ferromagnetic (FM) electrode has been the focus of many chapters. An interesting emerging subject is the role of chirality in the organic layer of the device. A relatively new method of achieving spin aligned carriers in organic semiconductors is spin pumping, where magnons in the FM substrate generate spin aligned carriers in the organic layer at the FM/organic interface.The third volume deals mainly with magnetic field effect in organic devices. Several spin-mixture processes that lead to magnetic field effect in devices and films are thoroughly discussed, such as hyperfine interaction, direct spin-orbit coupling, indirect spin-orbit coupling via Δg, triplet-triplet annihilation, and thermal spin alignment. The similarity between the magnetic field effect obtained in optoelectronic devices based on organic semiconductors and the novel hybrid organic-inorganic semiconductors is also a subject of intense interest. The fourth volume deals with spin in molecular films and devices. It includes thorough discussion of spin exchange interaction that leads to organic ferromagnets, as well as manifestation of various spin interactions in thin molecular films and devices.




Nanosols And Textiles


Book Description

The book provides a short introduction to the sol-gel process, principles in modification of the sols and technical details of the application on textiles, covering in particular the chemical content of the topic. New properties of textiles gained from nanosols are summarized and explained in a broad range, focusing on the mechanical and thermal stability, repellent properties, optical properties, antistatic coatings and bioactive coatings. An active discussion is held on the bioactive modifications, because this wide and interesting field offers a high potential for many new applications, e.g. in medicine. Besides basic research, this book will also provide examples on the transition of academic research to customer products.




Emerging Technologies In Biophysical Sciences: A World Scientific Reference (In 3 Volumes)


Book Description

Volume 1:Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing.Volume 2:Infertility has become a significant psychosocial burden affecting the lives of couples who cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad of emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in fertility and reproductive medicine.Volume 3:Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied to disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence (AI) and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in diagnostic technologies.




Soft Matter And Biomaterials On The Nanoscale: The Wspc Reference On Functional Nanomaterials - Part I (In 4 Volumes)


Book Description

This book is indexed in Chemical Abstracts ServiceSoft and bio-nanomaterials offer a tremendously rich behavior due to the diversity and tailorability of their structures. Built from polymers, nanoparticles, small and large molecules, peptoids and other nanoscale building blocks, such materials exhibit exciting functions, either intrinsically or through the engineering of their organization and combination of blocks. Thus, it is not surprising that a variety of challenges, for example, in energy storage, environment protection, advanced manufacturing, purification and healthcare, can be addressed using these materials. The recent advances in understanding the behavior of soft matter and biomaterials are being actively translated into functional materials systems and devices, which take advantages of newly discovered and specifically created morphologies with desired properties. This major reference work presents a detailed overview of recent research developments on fundamental and application-inspired aspects of soft and bio-nanomaterials and their emerging functions, and will be divided into four volumes: Vol 1: Soft Matter under Geometrical Confinement: From Fundamentals at Planar Surfaces and Interfaces to Functionalities of Nanoporous Materials; Vol 2: Polymers on the Nanoscale: Nano-structured Polymers and Their Applications; Vol 3: Bio-Inspired Nanomaterials: Nanomaterials Built from Biomolecules and Using Bio-derived Principles; Vol 4: Nanomedicine: Nanoscale Materials in Nano/Bio Medicine.




Main Group Strategies towards Functional Hybrid Materials


Book Description

Showcases the highly beneficial features arising from the presence of main group elements in organic materials, for the development of more sophisticated, yet simple advanced functional materials Functional organic materials are already a huge area of academic and industrial interest for a host of electronic applications such as Organic Light-Emitting Diodes (OLEDs), Organic Photovoltaics (OPVs), Organic Field-Effect Transistors (OFETs), and more recently Organic Batteries. They are also relevant to a plethora of functional sensory applications. This book provides an in-depth overview of the expanding field of functional hybrid materials, highlighting the incredibly positive aspects of main group centers and strategies that are furthering the creation of better functional materials. Main Group Strategies towards Functional Hybrid Materials features contributions from top specialists in the field, discussing the molecular, supramolecular and polymeric materials and applications of boron, silicon, phosphorus, sulfur, and their higher homologues. Hypervalent materials based on the heavier main group elements are also covered. The structure of the book allows the reader to compare differences and similarities between related strategies for several groups of elements, and to draw crosslinks between different sections. The incorporation of main group elements into functional organic materials has emerged as an efficient strategy for tuning materials properties for a wide range of practical applications Covers molecular, supramolecular and polymeric materials featuring boron, silicon, phosphorus, sulfur, and their higher homologues Edited by internationally leading researchers in the field, with contributions from top specialists Main Group Strategies towards Functional Hybrid Materials is an essential reference for organo-main group chemists pursuing new advanced functional materials, and for researchers and graduate students working in the fields of organic materials, hybrid materials, main group chemistry, and polymer chemistry.