Single Variable Differential and Integral Calculus


Book Description

The book “Single variable Differential and Integral Calculus” is an interesting text book for students of mathematics and physics programs, and a reference book for graduate students in any engineering field. This book is unique in the field of mathematical analysis in content and in style. It aims to define, compare and discuss topics in single variable differential and integral calculus, as well as giving application examples in important business fields. Some elementary concepts such as the power of a set, cardinality, measure theory, measurable functions are introduced. It also covers real and complex numbers, vector spaces, topological properties of sets, series and sequences of functions (including complex-valued functions and functions of a complex variable), polynomials and interpolation and extrema of functions. Although analysis is based on the single variable models and applications, theorems and examples are all set to be converted to multi variable extensions. For example, Newton, Riemann, Stieltjes and Lebesque integrals are studied together and compared.










MATLAB Differential and Integral Calculus


Book Description

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Differential and Integral Calculus introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving a short introduction to the MATLAB environment and MATLAB programming, this book provides all the material needed to work with ease in differential and integral calculus in one and several variables. Among other core topics of calculus, you will use MATLAB to investigate convergence, find limits of sequences and series and, for the purpose of exploring continuity, limits of functions. Various kinds of local approximations of functions are introduced, including Taylor and Laurent series. Symbolic and numerical techniques of differentiation and integration are covered with numerous examples, including applications to finding maxima and minima, areas, arc lengths, surface areas and volumes. You will also see how MATLAB can be used to solve problems in vector calculus and how to solve differential and difference equations.




Feynman Integral Calculus


Book Description

The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. The book characterizes the most powerful methods and illustrates them with numerous examples starting from very simple ones and progressing to nontrivial examples. The book demonstrates how to choose adequate methods and combine evaluation methods in a non-trivial way. The most powerful methods are characterized and then illustrated through numerous examples. This is an updated textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author.




Calculus and Analysis in Euclidean Space


Book Description

The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs.




Functions of Several Variables


Book Description

This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.




Foundations of Differential Calculus


Book Description

The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.