Soil Carbon Storage


Book Description

Soil Carbon Storage: Modulators, Mechanisms and Modeling takes a novel approach to the issue of soil carbon storage by considering soil C sequestration as a function of the interaction between biotic (e.g. microbes and plants) and abiotic (climate, soil types, management practices) modulators as a key driver of soil C. These modulators are central to C balance through their processing of C from both plant inputs and native soil organic matter. This book considers this concept in the light of state-of-the-art methodologies that elucidate these interactions and increase our understanding of a vitally important, but poorly characterized component of the global C cycle. The book provides soil scientists with a comprehensive, mechanistic, quantitative and predictive understanding of soil carbon storage. It presents a new framework that can be included in predictive models and management practices for better prediction and enhanced C storage in soils. - Identifies management practices to enhance storage of soil C under different agro-ecosystems, soil types and climatic conditions - Provides novel conceptual frameworks of biotic (especially microbial) and abiotic data to improve prediction of simulation model at plot to global scale - Advances the conceptual framework needed to support robust predictive models and sustainable land management practices




Evaluation of Soil Organic Matter Models


Book Description

Soil organic matter (SOM) represents a major pool of carbon within the biosphere, roughly twice than in atmospheric CO2. SOM models embody our best understanding of soil carbon dynamics and are needed to predict how global environmental change will influence soil carbon stocks. These models are also required for evaluating the likely effectiveness of different mitigation options. The first important step towards systematically evaluating the suitability of SOM models for these purposes is to test their simulations against real data. Since changes in SOM occur slowly, long-term datasets are required. This volume brings together leading SOM model developers and experimentalists to test SOM models using long-term datasets from diverse ecosystems, land uses and climatic zones within the temperate region.




Soil Carbon


Book Description

This book brings together the essential evidence and policy opportunities regarding the global importance of soil carbon for sustaining Earth's life support system for humanity. Covering the science and policy background for this important natural resource, it describes land management options that improve soil carbon status and therefore increase the benefits that humans derive from the environment. Written by renowned global experts, it is the principal output from a SCOPE rapid assessment process project.




Soil Carbon Dynamics


Book Description

Carbon stored in soils represents the largest terrestrial carbon pool and factors affecting this will be vital in the understanding of future atmospheric CO2 concentrations. This book provides an integrated view on measuring and modeling soil carbon dynamics. Based on a broad range of in-depth contributions by leading scientists it gives an overview of current research concepts, developments and outlooks and introduces cutting-edge methodologies, ranging from questions of appropriate measurement design to the potential application of stable isotopes and molecular tools. It includes a standardised soil CO2 efflux protocol, aimed at data consistency and inter-site comparability and thus underpins a regional and global understanding of soil carbon dynamics. This book provides an important reference work for students and scientists interested in many aspects of soil ecology and biogeochemical cycles, policy makers, carbon traders and others concerned with the global carbon cycle.




Global Soil Organic Carbon Map (GSOCmap) Version 1.5


Book Description

GSOCmap is the first global soil organic carbon map ever produced through a consultative and participatory process involving member countries, which makes this map totally new and unique. In fact, the map was prepared by member countries, under the guidance of the Intergovernmental Technical Panel on Soils and the Global Soil Partnership Secretariat. Countries agreed on the methodology to produce the map and were trained on modern tools and methodologies to develop national maps. The Global Soil Partnership then gathered all national maps to produce the final product, ensuring a thorough harmonization process. This technical report is a companion report to the GSOCmap V1.5. It presents methodologies and process of compiling the Global Soil Organic Carbon Map.







Global Soil Organic Carbon Map – GSOCmap v.1.6


Book Description

This document presents the technical details of the first-ever country-driven Global Soil Organic Carbon Map (GSOCmap). This map allows the estimation of Soil Organic Carbon (SOC) stocks from 0 to 30 cm. It represents a key contribution to the Sustainable Development Goal (SDG) indicator 15.3.1, which defines the area of degraded land. The novelty of this map is the fact that it is the first Global SOC stocks assessment which is produced through a participatory approach. Supported by the GSP-Secretariat, countries developed their capacities and stepped up efforts to compile or collect all available soil information at the national level. This technical report is a companion report to the GSOCmap V1.6.0. It presents methodologies and process of compiling the Global Soil organic Carbon Map (GSOCmap).