X-Ray Fluorescence in Biological Sciences


Book Description

X-Ray Fluorescence in Biological Sciences Discover a comprehensive exploration of X-ray fluorescence in chemical biology and the clinical and plant sciences In X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, a team of accomplished researchers delivers extensive coverage of the application of X-ray fluorescence (XRF) in the biological sciences, including chemical biology, clinical science, and plant science. The book also explores recent advances in XRF imaging techniques in these fields. The authors focus on understanding and investigating the intercellular structures and metals in plant cells, with advanced discussions of recently developed micro-analytical methods, like energy dispersive X-ray fluorescence spectrometry (EDXRF), total reflection X-ray fluorescence spectrometry (TXRF), micro-proton induced X-ray emission (micro-PIXE), electron probe X-ray microanalysis (EPXMA), synchrotron-based X-ray fluorescence microscopy (SXRF, SRIXE, or micro-XRF) and secondary ion mass spectrometry (SIMS). With thorough descriptions of protocols and practical approaches, the book also includes: A thorough introduction to the historical background and fundamentals of X-ray fluorescence, as well as recent developments in X-ray fluorescence analysis Comprehensive explorations of the general properties, production, and detection of X-rays and the preparation of samples for X-ray fluorescence analysis Practical discussions of the quantification of prepared samples observed under X-ray fluorescence and the relation between precision and beam size and sample amount In-depth examinations of wavelength-dispersive X-ray fluorescence and living materials Perfect for students and researchers studying the natural and chemical sciences, medical biology, plant physiology, agriculture, and botany, X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications will also earn a place in the libraries of researchers at biotechnology companies.




Multiscale X-Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging


Book Description

Understanding the intricate details of muscle contraction has a long-standing tradition in biophysical research. X-ray diffraction has been one of the key techniques to resolve the nanometer-sized molecular machinery involved in force generation. Modern, powerful X-ray sources now provide billions of X-ray photons in time intervals as short as microseconds, enabling fast time-resolved experiments that shed further light on the complex relationship between muscle structure and function. Another approach harnesses this power by repeatedly performing such an experiment at different locations in a sample. With millions of repeated exposures in a single experiment, X-ray diffraction can seamlessly be turned into a raster imaging method, neatly combining real- and reciprocal space information. This thesis has focused on the advancement of this scanning scheme and its application to soft biological tissue, in particular muscle tissue. Special emphasis was placed on the extraction of meaningful, quantitative structural parameters such as the interfilament distance of the actomyosin lattice in cardiac muscle. The method was further adapted to image biological samples on a range of scales, from isolated cells to millimeter-sized tissue sections. Due to the ‘photon-hungry’ nature of the technique, its full potential is often exploited in combination with full-field imaging techniques. From the vast set of microscopic tools available, coherent full-field X-ray imaging has proven to be particularly useful. This multimodal approach allows to correlate two- and three-dimensional images of cells and tissue with diffraction maps of structure parameters. With the set of tools developed in this thesis, scanning X-ray diffraction can now be efficiently used for the structural analysis of soft biological tissues with overarching future applications in biophysical and biomedical research.




Handbook of Practical X-Ray Fluorescence Analysis


Book Description

X-Ray fluorescence analysis is an established technique for non-destructive elemental materials analysis. This book gives a user-oriented practical guidance to the application of this method. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. This book is the bible of X-Ray fluorescence analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. It appeals to researchers, analytically active engineers and advanced students.




Applications of Synchrotron Radiation


Book Description

This book demonstrates the applications of synchrotron radiation in certain aspects of cell microbiology, specifically non-destructive elemental analyses, chemical-state analyses and imaging (distribution) of the elements within a cell. The basics for understanding and applications of synchrotron radiation are also described to make the contents more easily understood for a wide group of researchers in medical and biological sciences who might not be familiar with the physics of synchrotron radiation.




X-Ray Fluorescence Spectrometry and Related Techniques


Book Description

X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a micrometer-scale. And, the recent development and commercialization of bench top and portable instrumentation, offering extreme simplicity of operation in a low-cost design, have extended the applications of XRF to many more analytical problems.




X-Ray Fluorescence Spectroscopy for Laboratory Applications


Book Description

Provides comprehensive coverage on using X-ray fluorescence for laboratory applications This book focuses on the practical aspects of X-ray fluorescence (XRF) spectroscopy and discusses the requirements for a successful sample analysis, such as sample preparation, measurement techniques and calibration, as well as the quality of the analysis results. X-Ray Fluorescence Spectroscopy for Laboratory Applications begins with a short overview of the physical fundamentals of the generation of X-rays and their interaction with the sample material, followed by a presentation of the different methods of sample preparation in dependence on the quality of the source material and the objective of the measurement. After a short description of the different available equipment types and their respective performance, the book provides in-depth information on the choice of the optimal measurement conditions and the processing of the measurement results. It covers instrument types for XRF; acquisition and evaluation of X-Ray spectra; analytical errors; analysis of homogeneous materials, powders, and liquids; special applications of XRF; process control and automation. An important resource for the analytical chemist, providing concrete guidelines and support for everyday analyses Focuses on daily laboratory work with commercially available devices Offers a unique compilation of knowledge and best practices from equipment manufacturers and users Covers the entire work process: sample preparation, the actual measurement, data processing, assessment of uncertainty, and accuracy of the obtained results X-Ray Fluorescence Spectroscopy for Laboratory Applications appeals to analytical chemists, analytical laboratories, materials scientists, environmental chemists, chemical engineers, biotechnologists, and pharma engineers.




X-Ray Fluorescence Spectrometry


Book Description

X-ray fluorescence spectroscopy, one of the most powerful and flexible techniques available for the analysis and characterization of materials today, has gone through major changes during the past decade. Fully revised and expanded by 30%, X-Ray Fluorescence Spectrometry, Second Edition incorporates the latest industrial and scientific trends in all areas. It updates all previous material and adds new chapters on such topics as the history of X-ray fluorescence spectroscopy, the design of X-ray spectrometers, state-of-the-art applications, and X-ray spectra. Ron Jenkins draws on his extensive experience in training and consulting industry professionals for this clear and concise treatment, covering first the basic aspects of X rays, then the methodology of X-ray fluorescence spectroscopy and available instrumentation. He offers a comparison between wavelength and energy dispersive spectrometers as well as step-by-step guidelines to X-ray spectrometric techniques for qualitative and quantitative analysis-from specimen preparation to real-world industrial application. Favored by the American Chemical Society and the International Centre for Diffraction Data, X-Ray Fluorescence Spectrometry, Second Edition is an ideal introduction for newcomers to the field and an invaluable reference for experienced spectroscopists-in chemical analysis, geology, metallurgy, and materials science. An up-to-date review of X-ray spectroscopic techniques. This proven guidebook for industry professionals is thoroughly updated and expanded to reflect advances in X-ray analysis over the last decade. X-Ray Fluorescence Spectrometry, Second Edition includes: The history of X-ray fluorescence spectrometry-new to this edition. A critical review of the most useful X-ray spectrometers. Techniques and procedures for quantitative and qualitative analysis. Modern applications and industrial trends. X-ray spectra-new to this edition.




Micro-XRF Studies of Sediment Cores


Book Description

This volume presents papers on the use of micro-XRF core scanners in palaeoenvironmental research. It contains a broad ranging view of instrument capability and points to future developments that will help contribute to higher precision elemental data and faster core analysis. Readers will find a diverse range of research by leading experts that have used micro-XRF core scanners in a wide range of scientific applications. The book includes specific application papers reporting on the use of XRF core scanners in a variety of marine, lacustrine, and pollution studies. In addition, coverage also examines practical aspects of core scanner usage, data optimisation and data calibration and interpretation. In a little over a decade, micro-XRF sediment core scanners have made a substantive contribution to palaeoenvironmental research. Their impact is based on their ability to rapidly, non-destructively and automatically scan sediment cores. Not only do they rapidly provide important proxy data without damaging samples, but they can obtain environmental data at decadal, annual and even sub-annual scales. This volume will help both experienced and new users of these non-destructive core scanners take full advantage of one of the most powerful geochemical screening tools in the environmental scientist's toolbox.




Advances in X-Ray Analysis


Book Description

The 39th Annual Denver X-Ray Conference on Applications of X-Ray Analysis was held July 30 -August 3, 1990, at the Sheraton Steamboat Resort and Conference Center, Steamboat Springs, Colorado. The "Denver Conference" is recognized to be a major event in the x-ray analysis field, bringing together scientists and engineers from around the world to discuss the state of the art in x-ray applications as well as indications for future develop ments. In recent years there has been a steady expansion of applications of x-ray analysis to characterize surfaces and thin films. To introduce the audience to one of the exciting and important new developments in x-ray fluorescence, the topic for the Plenary Session of the 1990 Conference was: "Surface and Near-Surface X-Ray Spectroscopy. " The Conference had the privilege of inviting five leading world experts in the field of x-ray spectroscopy to deliver lectures at the Plenary Session. The first two lectures were on total-reflection x-ray fluorescence spectrometry. Professor P. Wobrauschek of Austria reviewed "Recent Developments and Results in Total-Reflection X-Ray Fluorescence. " Trends and applications of the technique were also discussed. Dr. T. Arai of Japan reported on "Surface and Near-Surface Analysis of Silicon Wafers by Total Reflection X-Ray Fluorescence. " He emphasized the importance of using proper x-ray optics to achieve high signal-to-noise ratios. A mathematical model relating the x-ray intensity to the depth of x-ray penetration was also described.




Handbook of X-Ray Spectrometry


Book Description

"Updates fundamentals and applications of all modes of x-ray spectrometry, including total reflection and polarized beam x-ray fluorescence analysis, and synchrotron radiation induced x-ray emission. Promotes the accurate measurement of samples while reducing the scattered background in the x-ray spectrum."