Geodesy


Book Description

Geodetic datum (including coordinate datum, height datum, depth datum, gravimetry datum) and geodetic systems (including geodetic coordinate system, plane coordinate system, height system, gravimetry system) are the common foundations for every aspect of geomatics. This course book focuses on geodetic datum and geodetic systems, and describes the basic theories, techniques, methods of geodesy. The main themes include: the various techniques of geodetic data acquisition, geodetic datum and geodetic control networks, geoid and height systems, reference ellipsoid and geodetic coordinate systems, Gaussian projection and Gaussian plan coordinates and the establishment of geodetic coordinate systems. The framework of this book is based on several decades of lecture noted and the contents are developed systematically for a complete introduction to the geodetic foundations of geomatics.




Geodesy


Book Description

Geodesy: The Concepts, Second Edition focuses on the processes, approaches, and methodologies employed in geodesy, including gravity field and motions of the earth and geodetic methodology. The book first underscores the history of geodesy, mathematics and geodesy, and geodesy and other disciplines. Discussions focus on algebra, geometry, statistics, symbolic relation between geodesy and other sciences, applications of geodesy, and the historical beginnings of geodesy. The text then ponders on the structure of geodesy, as well as functions of geodesy and geodetic theory and practice. The publication examines the motions, gravity field, deformations in time, and size and shape of earth. Topics include tidal phenomena, tectonic deformations, actual shape of the earth, gravity anomaly and potential, and observed polar motion and spin velocity variations. The elements of geodetic methodology, classes of mathematical models, and formulation and solving of problems are also mentioned. The text is a dependable source of data for readers interested in the concepts involved in geodesy.




Geodesy


Book Description

This book gives a systematic overview of the fundamental theories, frameworks and methods for measurement and evaluation applying to geodesy, though the contribution of geodetic spatial techniques for positioning and for establishing the gravitational field receives particular emphasis. These methods have led to a change in the setting up of geodetic basic networks that is also of importance in practical terms; for interdisciplinary geodynamics research geodesy can likewise make major contributions with their assistance. The current status of geodesy is illustrated by numerous examples from survey, evaluation and analysis; an extensive literature list makes further study all the easier. The book conveys an extensive overview of the profound changes that geodesy has undergone in the past twenty years.




GPS for Geodesy


Book Description

An in-depth description of the theory and mathematical models behind the application of the global positioning system in geodesy and geodynamics. The contributions by leading experts in the field ensure a continuous flow of ideas and developments. The mathematical models for GPS measurements are developed in the first half of the book, and these are followed by GPS solutions for geodetic applications on local, regional and global scales.




Geodesy? What's That?


Book Description

Geodesy (the measurement of the size and shape of the earth), fascinating since the time of Erathosenes, became a basic science for the space program. Irene Fischer was a leader in the construction of the World Geodetic System (has an Earth reference ellipsoid named in her honor) when it was still being done by surveyors, piecing together terrestrial, gravitational and astronomical data. By the 1970s, satellite geodesy and marine geodesy were just coming into their own. Using her career, Fischer revels in explaining how the science unfolded, and how misunderstandings occur across scientific fields, e.g., why the "standard ocean" and the geoid do not easily translate across the fields of oceanography and geodesy. Her account should appeal to those writing the history of women in science. Government science, too, is less well studied than academic science even though some fields, such as geodesy, were always government led. Fischer provides food for thought, as well, to those who claim to study the management of science in bureaucratic settings different from those of industry or academia. Peppered among these themes are Fischer's solutions to historical mysteries such as why Columbus' used a figure for the size of the earth's circumference that was so much smaller than Erastothenes' or Posidonius' (with the added benefit of making it easier to persuade his patrons).




Encyclopedia of Geodesy


Book Description

The past few decades have witnessed the explosive growth of Earth Sciences in the pursuit of knowledge and understanding the planet Earth. Such a development addresses the challenging endeavour to enrich human lives with bounding Nature as well as to preserve the Planet Earth, the Moon, the other planets, in total the Cosmos, for generations to come. Geodetic Sciences aspires to define and quantify the internal structure, the surface structure, the Oceans and the Atmosphere as well as the exterior - interior structure of the planets. Basic principles of Physics and Astronomy, namely the Static Gravity Field, the time-varying Gravity Field, in short Gravitodynamics, of the Earth and the other planets, the complex rotational motion for rigid bodies as well as deforming bodies of the Earth, The Moon, the Sun, and the planets and their moons and on top the time-varying Topography open a fascination Arena of Geodetic Sciences.




Physical Geodesy


Book Description

Based on "Heiskanen/Moritz" which served for more than 30 years as a standard reference Treats physical geodesy encyclopaedically Seamless blend of new ideas and methods (GPS, satellites, collocation)




Sciences of Geodesy - I


Book Description

This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences for high-level geodetic researchers, educators as well as engineers and students. Some of the chapters are written to ll literature blanks of the related areas. Most chapters are written by well-known scientists throughout the world in the related areas. The chapters are ordered by their titles. Summaries of the individual chapters and introductions of their authors and co-authors are as follows. Chapter 1 “Absolute and Relative Gravimetry” provides an overview of the gravimetric methods to determine most accurately the gravity acceleration at given locations.




Atmospheric Effects in Space Geodesy


Book Description

Various effects of the atmosphere have to be considered in space geodesy and all of them are described and treated consistently in this textbook. Two chapters are concerned with ionospheric and tropospheric path delays of microwave and optical signals used by space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), or Satellite Laser Ranging (SLR). It is explained how these effects are best reduced and modelled to improve the accuracy of space geodetic measurements. Other chapters are on the deformation of the Earth’s crust due to atmospheric loading, on atmospheric excitation of Earth rotation, and on atmospheric effects on gravity field measurements from special satellite missions such as CHAMP, GRACE, and GOCE. All chapters have been written by staff members of the Department of Geodesy and Geoinformation at TU Wien who are experts in the particular fields.




Satellite Geodesy


Book Description

This book covers the entire field of satellite geodesy and is intended to serve as a textbook for advanced undergraduate and graduate students, as well as a reference for professionals and scientists in the fields of engineering and geosciences such as geodesy, surveying engineering, geomatics, geography, navigation, geophysics and oceanography. The text provides a systematic overview of fundamentals including reference systems, time, signal propagation and satellite orbits, together with observation methods such as satellite laser ranging, satellite altimetry, gravity field missions, very long baseline interferometry, Doppler techniques, and Global Navigation Satellite Systems (GNSS). Particular emphasis is given to positioning techniques, such as the NAVSTAR Global Positioning System (GPS), and to applications. Numerous examples are included which refer to recent results in the fields of global and regional control networks; gravity field modeling; Earth rotation and global reference frames; crustal motion monitoring; cadastral and engineering surveying; geoinformation systems; land, air, and marine navigation; marine and glacial geodesy; and photogrammetry and remote sensing. This book will be an indispensable source of information for all concerned with satellite geodesy and its applications, in particular for spatial referencing, geoinformation, navigation, geodynamics, and operational positioning.