Amorphous Solids


Book Description

It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.







''Glassy'' Low Temperature Thermal Properties in Crystalline Solids


Book Description

Amorphous dielectrics are known to exhibit anomalous low temperature properties. An extensive review of these properties is presented with an eye toward an understanding of low-lying excitation modes thought to exist in glasses. Work on these systems is described in which a Zr-20 percent Nb samplewhich would be expected to reduce and redistribute the proposed tunneling states. Indeed, the thermal conductivity becomes similar to that of a quenched Zr-8 percent Nb sample and the ''excess'' specific heat linear in temperature dependence is reduced to half the value found in quenched Zr-20 percent Nb. The coefficient of the T3 term in the specific heat unexpectedly increased from 23.3 to 56.9 erg/gm K4 and this is attributed to a softening of the lattice due to annealing. The specific heat of this sample was remeasured after it had been dunked in liquid nitrogen. The cubic term was then found to be 19.5 erg/g K4, smaller than that in quenched Zr-20 percent Nb, an effect which had been expected due to the chemical diffusion during annealing. Further study of this phenomenon is suggested. Among other relevant measurements performed were the specific heat of a sample of amorphous B2O3 (presented by Stephens (1976)); thermal conductivities of phase-separated unleached Vycor glass and Pyrex; thermal conductivities above 1.2°K of polycrystalline MgO, heat-treated Pyroceram and porous Vycor (presented by Tait (1975)) and of mixed crystal KBr-KI (presented by Nathan, Lou and Tait (1976)). The last sample exhibited density fluctuations on a scale of 1000 A but exhibited thermal properties typical of dielectric crystal. Speed of sound measurements were made on both unleached and porous Vycor.




Low-temperature Thermal And Vibrational Properties Of Disordered Solids: A Half-century Of Universal "Anomalies" Of Glasses


Book Description

This book, edited by M. A. Ramos and contributed by several reputed physicists in the field, presents a timely review on low-temperature thermal and vibrational properties of glasses, and of disordered solids in general. In 1971, the seminal work of Zeller and Pohl was published, which triggered this relevant research field in condensed matter physics. Hence, this book also commemorates about 50 years of that highlight with a comprehensive, updated review.In brief, glasses (firstly genuine amorphous solids but later on followed by different disordered crystals) were found to universally exhibit low-temperature properties (specific heat, thermal conductivity, acoustic and dielectric attenuation, etc.) unexpectedly very similar among them — and very different from those of their crystalline counterparts.These universal 'anomalies' of glasses and other disordered solids remain very controversial topics in condensed matter physics. They have been addressed exhaustively in this book, through many updated experimental data, a survey of most relevant models and theories, as well as by computational simulations.




Amorphous Solids


Book Description

It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.




Glassy, Amorphous and Nano-Crystalline Materials


Book Description

Provides a summary of non-equilibrium glassy and amorphous structures and their macro- and microscopic thermal properties. The book contains a carefully selected works of fourteen internationally recognized scientists involving the advances of the physics and chemistry of the glassy and amorphous states.




Thermal Properties of Solids at Room and Cryogenic Temperatures


Book Description

The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review




Glassy, Amorphous and Nano-Crystalline Materials


Book Description

Provides a summary of non-equilibrium glassy and amorphous structures and their macro- and microscopic thermal properties. The book contains a carefully selected works of fourteen internationally recognized scientists involving the advances of the physics and chemistry of the glassy and amorphous states.




Heat Capacity and Thermal Expansion at Low Temperatures


Book Description

The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc. , place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials.




Glassy Disordered Systems


Book Description

The present book describes the fundamental features of glassy disordered systems at high temperatures (close to the liquid-to-glass transition) and for the first time in a book, the universal anomalous properties of glasses at low energies (i.e. temperatures/frequencies lower than the Debye values) are depicted. Several important theoretical models for both the glass formation and the universal anomalous properties of glasses are described and analyzed. The origin and main features of soft atomic-motion modes and their excitations, as well as their role in the anomalous properties, are considered in detail. It is shown particularly that the soft-mode model gives rise to a consistent description of the anomalous properties. Additional manifestations of the soft modes in glassy phenomena are described. Other models of the anomalous glassy properties can be considered as limit cases of the soft-mode model for either very low or moderately low temperatures/frequencies.