(Mostly) Commutative Algebra


Book Description

This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields. The topics introduced include arithmetic of rings, modules, especially principal ideal rings and the classification of modules over such rings, Galois theory, as well as an introduction to more advanced topics such as homological algebra, tensor products, and algebraic concepts involved in algebraic geometry. More than 300 exercises will allow the reader to deepen his understanding of the subject. The book also includes 11 historical vignettes about mathematicians who contributed to commutative algebra.




Commutative Algebra


Book Description

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.




Introduction To Commutative Algebra


Book Description

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.




Progress in Commutative Algebra 1


Book Description

This is the first of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains combinatorial and homological surveys. The combinatorial papers document some of the increasing focus in commutative algebra recently on the interaction between algebra and combinatorics. Specifically, one can use combinatorial techniques to investigate resolutions and other algebraic structures as with the papers of Fløystad on Boij-Söderburg theory, of Geramita, Harbourne and Migliore, and of Cooper on Hilbert functions, of Clark on minimal poset resolutions and of Mermin on simplicial resolutions. One can also utilize algebraic invariants to understand combinatorial structures like graphs, hypergraphs, and simplicial complexes such as in the paper of Morey and Villarreal on edge ideals. Homological techniques have become indispensable tools for the study of noetherian rings. These ideas have yielded amazing levels of interaction with other fields like algebraic topology (via differential graded techniques as well as the foundations of homological algebra), analysis (via the study of D-modules), and combinatorics (as described in the previous paragraph). The homological articles the editors have included in this volume relate mostly to how homological techniques help us better understand rings and singularities both noetherian and non-noetherian such as in the papers by Roberts, Yao, Hummel and Leuschke.




Undergraduate Commutative Algebra


Book Description

Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.




A Field Guide to Algebra


Book Description

This book has a nonstandard choice of topics, including material on differential galois groups and proofs of the transcendence of e and pi. The author uses a conversational tone and has included a selection of stamps to accompany the text.




Basic Commutative Algebra


Book Description

This textbook, set for a one or two semester course in commutative algebra, provides an introduction to commutative algebra at the postgraduate and research levels. The main prerequisites are familiarity with groups, rings and fields. Proofs are self-contained. The book will be useful to beginners and experienced researchers alike. The material is so arranged that the beginner can learn through self-study or by attending a course. For the experienced researcher, the book may serve to present new perspectives on some well-known results, or as a reference.




A Course in Commutative Algebra


Book Description

This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.




Introduction to Commutative Algebra and Algebraic Geometry


Book Description

Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.




A Singular Introduction to Commutative Algebra


Book Description

This substantially enlarged second edition aims to lead a further stage in the computational revolution in commutative algebra. This is the first handbook/tutorial to extensively deal with SINGULAR. Among the book’s most distinctive features is a new, completely unified treatment of the global and local theories. Another feature of the book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic.