150 Years of Mathematics at Washington University in St. Louis


Book Description

Articles in this book are based on talks given at the conference commemorating the 150th anniversary of the Washington University in St. Louis. The articles cover a wide range of important topics in mathematics, and are written by former and present faculty or graduates of the Washington University Department of Mathematics. The volume is prefaced by a brief history of the Washington University Department of Mathematics, a roster of those who received the PhD degree from the department, and a list of the Washington University Department of Mathematics faculty.




The d-bar Neumann Problem and Schrödinger Operators


Book Description

This book's subject lies in the nexus of partial differential equations, operator theory, and complex analysis. The spectral analysis of the complex Laplacian and the compactness of the d-bar-Neumann operator are primary topics.The revised 2nd edition explores updates to Schrödinger operators with magnetic fields and connections to the Segal Bargmann space (Fock space), to quantum mechanics, and the uncertainty principle.




Prospects in Mathematical Physics


Book Description

This book includes papers presented at the Young Researchers Symposium of the 14th International Congress on Mathematical Physics, held in July 2003, in Lisbon, Portugal. The goal of thes book is to illustrate various promising areas of mathematical physics in a way accessible to researchers at the beginning of their career. Two of the three laureates of the Henri Poincare Prizes, Huzihiro Araki and Elliott Lieb, also contributed to this volume. The book provides a good survey of some active areas of research in modern mathematical physics.




Mathematical Studies on Human Disease Dynamics


Book Description

This volume contains the proceedings of the AMS-SIAM-IMS Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges, held in Snowbird, Utah, July 17-21, 2005. The goal of the conference was to bring together leading and upcoming researchers to discuss the latest advances and challenges associated with the modeling of the dynamics of emerging and re-emerging diseases, and to explore various control strategies. The articles included in this book are devoted to some of the significant recent advances, trends, and challenges associated with the mathematical modeling and analysis of the dynamics and control of some diseases of public health importance. In addition to illustrating many of the diverse prevailing epidemiological challenges, together with the diversity of mathematical approaches needed to address them, this book provides insights on a number of topical modeling issues such as the modeling and control of mosquito-borne diseases, respiratory diseases, animal diseases (such as foot-and-mouth disease), cancer and tumor growth modeling, influenza, HIV, HPV, rotavirus, etc. This book also touches upon other important topics such as the use of modeling i




Lectures on the L2-Sobolev Theory of the [d-bar]-Neumann Problem


Book Description

This book provides a thorough and self-contained introduction to the $\bar{\partial}$-Neumann problem, leading up to current research, in the context of the $\mathcal{L}^{2}$-Sobolev theory on bounded pseudoconvex domains in $\mathbb{C}^{n}$. It grew out of courses for advanced graduate students and young researchers given by the author at the Erwin Schrodinger International Institute for Mathematical Physics and at Texas A & M University. The introductory chapter provides an overview of the contents and puts them in historical perspective. The second chapter presents the basic $\mathcal{L}^{2}$-theory. Following is a chapter on the subelliptic estimates on strictly pseudoconvex domains. The two final chapters on compactness and on regularity in Sobolev spaces bring the reader to the frontiers of research. Prerequisites are a solid background in basic complex and functional analysis, including the elementary $\mathcal{L}^{2}$-Sobolev theory and distributions. Some knowledge in several complex variables is helpful. Concerning partial differential equations, not much is assumed. The elliptic regularity of the Dirichlet problem for the Laplacian is quoted a few times, but the ellipticity results needed for elliptic regularization in the third chapter are proved from scratch.




Non-commutative Analysis


Book Description

'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.




Complex Dynamics


Book Description

Chaotic behavior of (even the simplest) iterations of polynomial maps of the complex plane was known for almost one hundred years due to the pioneering work of Farou, Julia, and their contemporaries. However, it was only twenty-five years ago that the first computer generated images illustrating properties of iterations of quadratic maps appeared. These images of the so-called Mandelbrot and Julia sets immediately resulted in a strong resurgence of interest in complex dynamics. The present volume, based on the talks at the conference commemorating the twenty-fifth anniversary of the appearance of Mandelbrot sets, provides a panorama of current research in this truly fascinating area of mathematics.




An Alpine Anthology of Homotopy Theory


Book Description

The second Arolla conference on algebraic topology brought together specialists covering a wide range of homotopy theory and $K$-theory. These proceedings reflect both the variety of talks given at the conference and the diversity of promising research directions in homotopy theory. The articles contained in this volume include significant contributions to classical unstable homotopy theory, model category theory, equivariant homotopy theory, and the homotopy theory of fusionsystems, as well as to $K$-theory of both local fields and $C*$-algebras.




Snowbird Lectures on String Geometry


Book Description

The interaction and cross-fertilization of mathematics and physics is ubiquitous in the history of both disciplines. In particular, the recent developments of string theory have led to some relatively new areas of common interest among mathematicians and physicists, some of which are explored in the papers in this volume. These papers provide a reasonably comprehensive sampling of the potential for fruitful interaction between mathematicians and physicists that exists as a result of string theory.




The Geometry of Riemann Surfaces and Abelian Varieties


Book Description

Most of the papers in this book deal with the theory of Riemann surfaces (moduli problems, automorphisms, etc.), abelian varieties, theta functions, and modular forms. Some of the papers contain surveys on the recent results in the topics of current interest to mathematicians, whereas others contain new research results.