Adaptive Signal Models


Book Description

Adaptive Signal Models: Theory, Algorithms and Audio Applications presents methods for deriving mathematical models of natural signals. The introduction covers the fundamentals of analysis-synthesis systems and signal representations. Some of the topics in the introduction include perfect and near-perfect reconstruction, the distinction between parametric and nonparametric methods, the role of compaction in signal modeling, basic and overcomplete signal expansions, and time-frequency resolution issues. These topics arise throughout the book as do a number of other topics such as filter banks and multiresolution. The second chapter gives a detailed development of the sinusoidal model as a parametric extension of the short-time Fourier transform. This leads to multiresolution sinusoidal modeling techniques in Chapter Three, where wavelet-like approaches are merged with the sinusoidal model to yield improved models. In Chapter Four, the analysis-synthesis residual is considered; for realistic synthesis, the residual must be separately modeled after coherent components (such as sinusoids) are removed. The residual modeling approach is based on psychoacoustically motivated nonuniform filter banks. Chapter Five deals with pitch-synchronous versions of both the wavelet and the Fourier transform; these allow for compact models of pseudo-periodic signals. Chapter Six discusses recent algorithms for deriving signal representations based on time-frequency atoms; primarily, the matching pursuit algorithm is reviewed and extended. The signal models discussed in the book are compact, adaptive, parametric, time-frequency representations that are useful for analysis, coding, modification, and synthesis of natural signals such as audio. The models are all interpreted as methods for decomposing a signal in terms of fundamental time-frequency atoms; these interpretations, as well as the adaptive and parametric natures of the models, serve to link the various methods dealt with in the text. Adaptive Signal Models: Theory, Algorithms and Audio Applications serves as an excellent reference for researchers of signal processing and may be used as a text for advanced courses on the topic.




Computational Signal Processing and Analysis


Book Description

This book comprises a collection of papers by international experts, presented at the International Conference on NextGen Electronic Technologies (ICNETS2-2017). ICNETS2 encompassed six symposia covering all aspects of electronics and communications engineering domains, including relevant nano/micro materials and devices. Featuring the latest research on computational signal processing and analysis, the book is useful to researchers, professionals, and students working in the core areas of electronics and their applications, especially signal processing, embedded systems, and networking.




Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images


Book Description

The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.