1st fib Congress in Osaka Japan Vol2


Book Description




2nd fib Congress in Naples Italy Vol2


Book Description




1st fib Congress in Osaka Japan Vol1


Book Description




Proceedings fib Symposium in Budapest Hungary Vol2


Book Description




Proceedings fib Symposium in Avignon France


Book Description




Handbook of International Bridge Engineering


Book Description

This comprehensive and up-to-date reference work and resource book covers state-of-the-art and state-of-the-practice for bridge engineering worldwide. Countries covered include Canada and the United States in North America; Argentina and Brazil in South America; Bosnia, Bulgaria, Croatia, Czech Republic, Denmark, Finland, France, Greece, Macedonia, Poland, Russia, Serbia, Slovakia, and Ukraine in the European continent; China, Indonesia, Japan, Chinese Taipei, and Thailand in Asia; and Egypt, Iran, and Turkey in the Middle East. The book examines the use of different materials for each region, including stone, timber, concrete, steel, and composite. It examines various bridge types, including slab, girder, segmental, truss, arch, suspension, and cable-stayed. A color insert illustrates select landmark bridges. It also presents ten benchmark comparisons for highway composite girder design from different countries; the highest bridges; the top 100 longest bridges, and the top 20 longest bridge spans for various bridge types including suspension, cable-stayed, extradosed, arch, girder, movable bridges (vertical lift, swing, and bascule), floating, stress ribbon, and timber; and bridge construction methods.




Field Measurements in Geomechanics


Book Description

A broad cross-section of papers from the 6th Internation Symposium FMGM in Oslo September 2003 detailing the latest developments in geomechanical field measurement technology and methods. Taking in a wide range of real-world applications from tunnels to off-shore structures, these papers look at both theoretical and practical aspects of the subject and assess performances in the field, providing a wealth of knowledge for professionals and researchers interested in field measurements, soil and granular mechanics, engineering, geology or construction.




Fibre Optic Methods for Structural Health Monitoring


Book Description

The use of fibre optic sensors in structural health monitoring has rapidly accelerated in recent years. By embedding fibre optic sensors in structures (e.g. buildings, bridges and pipelines) it is possible to obtain real time data on structural changes such as stress or strain. Engineers use monitoring data to detect deviations from a structure’s original design performance in order to optimise the operation, repair and maintenance of a structure over time. Fibre Optic Methods for Structural Health Monitoring is organised as a step-by-step guide to implementing a monitoring system and includes examples of common structures and their most-frequently monitored parameters. This book: presents a universal method for static structural health monitoring, using a technique with proven effectiveness in hundreds of applications worldwide; discusses a variety of different structures including buildings, bridges, dams, tunnels and pipelines; features case studies which describe common problems and offer solutions to those problems; provides advice on establishing mechanical parameters to monitor (including deformations, rotations and displacements) and on placing sensors to achieve monitoring objectives; identifies methods for interpreting data according to construction material and shows how to apply numerical concepts and formulae to data in order to inform decision making. Fibre Optic Methods for Structural Health Monitoring is an invaluable reference for practising engineers in the fields of civil, structural and geotechnical engineering. It will also be of interest to academics and undergraduate/graduate students studying civil and structural engineering.







Creep and Hygrothermal Effects in Concrete Structures


Book Description

This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.