Embedded Systems Design with FPGAs


Book Description

This book presents the methodologies and for embedded systems design, using field programmable gate array (FPGA) devices, for the most modern applications. Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including applications, advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, and dynamic reconfiguration.




Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology


Book Description

The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.




Three-Dimensional Integrated Circuit Design


Book Description

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization




Low Power Circuits for Emerging Applications in Communications, Computing, and Sensing


Book Description

The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architecutres, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Features Discusses unique technologies and material only available in specialized journal and conferences Covers emerging applications areas, such as ultra low power communications, emerging bio-electronics, and operation in extreme environments Explores broad circuit operation, ex. analog, RF, memory, and digital circuits Contains practical applications in the engineering field, as well as graduate studies Written by international experts from both academia and industry




Extreme Environment Electronics


Book Description

Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.




Compact Models for Integrated Circuit Design


Book Description

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.




Boolean Circuit Rewiring


Book Description

Demonstrates techniques which will allow rewiring rates ofover 95%, enabling adoption of deep sub-micron chips for industrialapplications Logic synthesis is an essential part of the modern digital ICdesign process in semi-conductor industry. This book discusses alogic synthesis technique called “rewiring” and itslatest technical advancement in term of rewirability. Rewiringtechnique has surfaced in academic research since 1993 and there iscurrently no book available on the market which systematically andcomprehensively discusses this rewiring technology. The authorscover logic transformation techniques with concentration onrewiring. For many decades, the effect of wiring on logicstructures has been ignored due to an ideal view of wires and theirnegligible role in the circuit performance. However intoday’s semiconductor technology wiring is the major playerin circuit performance degeneration and logic synthesis engines canbe improved to deal with this through wire-based transformations.This book introduces the automatic test pattern generation(ATPG)-based rewiring techniques, which are recently active in therealm of logic synthesis/verification of VLSI/SOC designs. Unique comprehensive coverage of semiconductor rewiringtechniques written by leading researchers in the field Provides complete coverage of rewiring from an introductory tointermediate level Rewiring is explained as a flexible technique for Boolean logicsynthesis, introducing the concept of Boolean circuittransformation and testing, with examples Readers can directly apply the described techniques toreal-world VLSI design issues Focuses on the automatic test pattern generation (ATPG) basedrewiring methods although some non-ATPG based rewiring methods suchas graph based alternative wiring (GBAW), and “set of pairsof functions to be distinguished” (SPFD) based rewiring arealso discussed A valuable resource for researchers and postgraduate students inVLSI and SoC design, as well as digital design engineers, EDAsoftware developers, and design automation experts that specializein the synthesis and optimization of logical circuits.




Handbook on Securing Cyber-Physical Critical Infrastructure


Book Description

Introduction: Securing Cyber-Physical Infrastructures--An Overview Part 1: Theoretical Foundations of Security Chapter 1: Security and Vulnerability of Cyber-Physical Infrastructure Networks: A Control-Theoretic Approach Chapter 2: Game Theory for Infrastructure Security -- The Power of Intent-Based Adversary Models Chapter 3: An Analytical Framework for Cyber-Physical Networks Chapter 4: Evolution of Widely Spreading Worms and Countermeasures : Epidemic Theory and Application Part 2: Security for Wireless Mobile Networks Chapter 5: Mobile Wireless Network Security Chapter 6: Robust Wireless Infrastructure against Jamming Attacks Chapter 7: Security for Mobile Ad Hoc Networks Chapter 8: Defending against Identity-Based Attacks in Wireless Networks Part 3: Security for Sensor Networks Chapter 9: Efficient and Distributed Access Control for Sensor Networks Chapter 10: Defending against Physical Attacks in Wireless Sensor Networks Chapter 11: Node Compromise Detection in Wireless Sensor N ...




Design of 3D Integrated Circuits and Systems


Book Description

Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and systems, application of novel materials for 3D systems, and the thermal challenges to restrict power dissipation and improve performance of 3D systems. Containing contributions from experts in industry as well as academia, this authoritative text: Illustrates different 3D integration approaches, such as die-to-die, die-to-wafer, and wafer-to-wafer Discusses the use of interposer technology and the role of Through-Silicon Vias (TSVs) Presents the latest improvements in three major fields of thermal management for multiprocessor systems-on-chip (MPSoCs) Explores ThruChip Interface (TCI), NAND flash memory stacking, and emerging applications Describes large-scale integration testing and state-of-the-art low-power testing solutions Complete with experimental results of chip-level 3D integration schemes tested at IBM and case studies on advanced complementary metal–oxide–semiconductor (CMOS) integration for 3D integrated circuits (ICs), Design of 3D Integrated Circuits and Systems is a practical reference that not only covers a wealth of design issues encountered in 3D integration but also demonstrates their impact on the efficiency of 3D systems.




Handbook of 3D Integration, Volume 4


Book Description

This fourth volume of the landmark handbook focuses on the design, testing, and thermal management of 3D-integrated circuits, both from a technological and materials science perspective. Edited and authored by key contributors from top research institutions and high-tech companies, the first part of the book provides an overview of the latest developments in 3D chip design, including challenges and opportunities. The second part focuses on the test methods used to assess the quality and reliability of the 3D-integrated circuits, while the third and final part deals with thermal management and advanced cooling technologies and their integration.