2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS 2011)
Author :
Publisher :
Page : 233 pages
File Size : 29,54 MB
Release : 2011
Category :
ISBN : 9781467304894
Author :
Publisher :
Page : 233 pages
File Size : 29,54 MB
Release : 2011
Category :
ISBN : 9781467304894
Author : IEEE Staff
Publisher :
Page : pages
File Size : 50,42 MB
Release : 2011-12-07
Category :
ISBN : 9781467304917
Author : Matthias Dehmer
Publisher : John Wiley & Sons
Page : 301 pages
File Size : 24,14 MB
Release : 2012-11-28
Category : Medical
ISBN : 3527665455
This ready reference discusses different methods for statistically analyzing and validating data created with high-throughput methods. As opposed to other titles, this book focusses on systems approaches, meaning that no single gene or protein forms the basis of the analysis but rather a more or less complex biological network. From a methodological point of view, the well balanced contributions describe a variety of modern supervised and unsupervised statistical methods applied to various large-scale datasets from genomics and genetics experiments. Furthermore, since the availability of sufficient computer power in recent years has shifted attention from parametric to nonparametric methods, the methods presented here make use of such computer-intensive approaches as Bootstrap, Markov Chain Monte Carlo or general resampling methods. Finally, due to the large amount of information available in public databases, a chapter on Bayesian methods is included, which also provides a systematic means to integrate this information. A welcome guide for mathematicians and the medical and basic research communities.
Author : Pey-Chang Kent Lin
Publisher : Springer Science & Business Media
Page : 112 pages
File Size : 40,68 MB
Release : 2013-10-31
Category : Technology & Engineering
ISBN : 146149429X
This book brings to bear a body of logic synthesis techniques, in order to contribute to the analysis and control of Boolean Networks (BN) for modeling genetic diseases such as cancer. The authors provide several VLSI logic techniques to model the genetic disease behavior as a BN, with powerful implicit enumeration techniques. Coverage also includes techniques from VLSI testing to control a faulty BN, transforming its behavior to a healthy BN, potentially aiding in efforts to find the best candidates for treatment of genetic diseases.
Author : Kusum Deep
Publisher : Springer Science & Business Media
Page : 1034 pages
File Size : 42,51 MB
Release : 2012-04-13
Category : Technology & Engineering
ISBN : 8132204913
The objective is to provide the latest developments in the area of soft computing. These are the cutting edge technologies that have immense application in various fields. All the papers will undergo the peer review process to maintain the quality of work.
Author : Vikrant Bhateja
Publisher : Springer Nature
Page : 780 pages
File Size : 43,87 MB
Release : 2020-09-08
Category : Technology & Engineering
ISBN : 9811557888
This book presents the proceedings of 8th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2020), which aims to bring together researchers, scientists, engineers and practitioners to share new ideas and experiences in the domain of intelligent computing theories with prospective applications to various engineering disciplines. The book is divided into two volumes: Evolution in Computational Intelligence (Volume 1) and Intelligent Data Engineering and Analytics (Volume 2). Covering a broad range of topics in computational intelligence, the book features papers on theoretical as well as practical aspects of areas such as ANN and genetic algorithms, computer interaction, intelligent control optimization, evolutionary computing, intelligent e-learning systems, machine learning, mobile computing, and multi-agent systems. As such, it is a valuable reference resource for postgraduate students in various engineering disciplines.
Author : A.J. Tallón-Ballesteros
Publisher : IOS Press
Page : 1186 pages
File Size : 12,10 MB
Release : 2019-11-06
Category : Computers
ISBN : 1643680196
The Fuzzy Systems and Data Mining (FSDM) conference is an annual event encompassing four main themes: fuzzy theory, algorithms and systems, which includes topics like stability, foundations and control; fuzzy application, which covers different kinds of processing as well as hardware and architectures for big data and time series and has wide applicability; the interdisciplinary field of fuzzy logic and data mining, encompassing applications in electrical, industrial, chemical and engineering fields as well as management and environmental issues; and data mining, outlining new approaches to big data, massive data, scalable, parallel and distributed algorithms. The annual conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This book includes the papers accepted and presented at the 5th International Conference on Fuzzy Systems and Data Mining (FSDM 2019), held in Kitakyushu, Japan on 18-21 October 2019. This year, FSDM received 442 submissions. All papers were carefully reviewed by program committee members, taking account of the quality, novelty, soundness, breadth and depth of the research topics falling within the scope of FSDM. The committee finally decided to accept 137 papers, which represents an acceptance rate of about 30%. The papers presented here are arranged in two sections: Fuzzy Sets and Data Mining, and Communications and Networks. Providing an overview of the most recent scientific and technological advances in the fields of fuzzy systems and data mining, the book will be of interest to all those working in these fields.
Author : Md. Zia Ur Rahman
Publisher : CRC Press
Page : 227 pages
File Size : 35,90 MB
Release : 2021-06-30
Category : Science
ISBN : 1000375226
This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.
Author : Ignacio Rojas
Publisher : Springer Nature
Page : 843 pages
File Size : 49,63 MB
Release : 2020-04-30
Category : Science
ISBN : 3030453855
This volume constitutes the proceedings of the 8th International Work-Conference on IWBBIO 2020, held in Granada, Spain, in May 2020. The total of 73papers presented in the proceedings, was carefully reviewed and selected from 241 submissions. The papers are organized in topical sections as follows: Biomarker Identification; Biomedical Engineering; Biomedical Signal Analysis; Bio-Nanotechnology; Computational Approaches for Drug Design and Personalized Medicine; Computational Proteomics and Protein-Protein Interactions; Data Mining from UV/VIS/NIR Imaging and Spectrophotometry; E-Health Technology, Services and Applications; Evolving Towards Digital Twins in Healthcare (EDITH); High Performance in Bioinformatics; High-Throughput Genomics: Bioinformatic Tools and Medical Applications; Machine Learning in Bioinformatics; Medical Image Processing; Simulation and Visualization of Biological Systems.
Author : Florentino Fdez-Riverola
Publisher : Springer
Page : 346 pages
File Size : 14,75 MB
Release : 2017-06-19
Category : Technology & Engineering
ISBN : 3319608169
Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next-generation sequencing technologies, together with novel and constantly evolving, distinct types of omics data technologies, have created an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis of the datasets produced and their integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Clearly, Biology is more and more a science of information and requires tools from the computational sciences. In the last few years, we have seen the rise of a new generation of interdisciplinary scientists with a strong background in the biological and computational sciences. In this context, the interaction of researchers from different scientific fields is, more than ever, of foremost importance in boosting the research efforts in the field and contributing to the education of a new generation of Bioinformatics scientists. The PACBB’17 conference was intended to contribute to this effort and promote this fruitful interaction, with a technical program that included 39 papers spanning many different sub-fields in Bioinformatics and Computational Biology. Further, the conference promoted the interaction of scientists from diverse research groups and with a distinct background (computer scientists, mathematicians, biologists).