Transcriptomics and Gene Regulation


Book Description

This volume focuses on modern computational and statistical tools for translational gene expression and regulation research to improve prognosis, diagnostics, prediction of severity, and therapies for human diseases. It introduces some of state of the art technologies as well as computational and statistical tools for translational bioinformatics in the areas of gene transcription and regulation, including the tools for next generation sequencing analyses, alternative spicing, the modeling of signaling pathways, network analyses in predicting disease genes, as well as protein and gene expression data integration in complex human diseases etc. The book is particularly useful for researchers and students in the field of molecular biology, clinical biology and bioinformatics, as well as physicians etc. Dr. Jiaqian Wu is assistant professor in the Vivian L. Smith Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Centre, Houston, TX, USA.​




Bioinformatics and Biomedical Engineering


Book Description

This book constitutes the refereed proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2016, held in Granada, Spain, in April 2016. The 69 papers presented were carefully reviewed and selected from 286 submissions. The scope of the conference spans the following areas: bioinformatics for healthcare and diseases; biomedical image analysis; biomedical signal analysis; computational systems for modeling biological processes; eHealth; tools for next generation sequencing data analysis; assistive technology for people with neuromotor disorders; fundamentals of biological dynamics and maximization of the information extraction from the experiments in the biological systems; high performance computing in bioinformatics, computational biology and computational chemistry; human behavior monitoring, analysis and understanding; pattern recognition and machine learning in the -omics sciences; and resources for bioinformatics.




Quantitative Assessment and Validation of Network Inference Methods in Bioinformatics


Book Description

Scientists today have access to an unprecedented arsenal of high-tech tools that can be used to thoroughly characterize biological systems of interest. High-throughput “omics” technologies enable to generate enormous quantities of data at the DNA, RNA, epigenetic and proteomic levels. One of the major challenges of the post-genomic era is to extract functional information by integrating such heterogeneous high-throughput genomic data. This is not a trivial task as we are increasingly coming to understand that it is not individual genes, but rather biological pathways and networks that drive an organism’s response to environmental factors and the development of its particular phenotype. In order to fully understand the way in which these networks interact (or fail to do so) in specific states (disease for instance), we must learn both, the structure of the underlying networks and the rules that govern their behavior. In recent years there has been an increasing interest in methods that aim to infer biological networks. These methods enable the opportunity for better understanding the interactions between genomic features and the overall structure and behavior of the underlying networks. So far, such network models have been mainly used to identify and validate new interactions between genes of interest. But ultimately, one could use these networks to predict large-scale effects of perturbations, such as treatment by multiple targeted drugs. However, currently, we are still at an early stage of comprehending methods and approaches providing a robust statistical framework to quantitatively assess the quality of network inference and its predictive potential. The scope of this Research Topic in Bioinformatics and Computational Biology aims at addressing these issues by investigating the various, complementary approaches to quantify the quality of network models. These “validation” techniques could focus on assessing quality of specific interactions, global and local structures, and predictive ability of network models. These methods could rely exclusively on in silico evaluation procedures or they could be coupled with novel experimental designs to generate the biological data necessary to properly validate inferred networks.




Advances in the Mathematical Sciences


Book Description

Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.




Fuzzy Systems and Data Mining V


Book Description

The Fuzzy Systems and Data Mining (FSDM) conference is an annual event encompassing four main themes: fuzzy theory, algorithms and systems, which includes topics like stability, foundations and control; fuzzy application, which covers different kinds of processing as well as hardware and architectures for big data and time series and has wide applicability; the interdisciplinary field of fuzzy logic and data mining, encompassing applications in electrical, industrial, chemical and engineering fields as well as management and environmental issues; and data mining, outlining new approaches to big data, massive data, scalable, parallel and distributed algorithms. The annual conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This book includes the papers accepted and presented at the 5th International Conference on Fuzzy Systems and Data Mining (FSDM 2019), held in Kitakyushu, Japan on 18-21 October 2019. This year, FSDM received 442 submissions. All papers were carefully reviewed by program committee members, taking account of the quality, novelty, soundness, breadth and depth of the research topics falling within the scope of FSDM. The committee finally decided to accept 137 papers, which represents an acceptance rate of about 30%. The papers presented here are arranged in two sections: Fuzzy Sets and Data Mining, and Communications and Networks. Providing an overview of the most recent scientific and technological advances in the fields of fuzzy systems and data mining, the book will be of interest to all those working in these fields.




Big Data over Networks


Book Description

Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.




Data Analytics for Intelligent Transportation Systems


Book Description

Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems that includes detailed coverage of the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. Users will learn how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. - Includes case studies in each chapter that illustrate the application of concepts covered - Presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies - Contains contributors from both leading academic and commercial researchers - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications




Finite Frequency Analysis and Synthesis for Singularly Perturbed Systems


Book Description

This book is a self-contained collection of recent research findings providing a comprehensive and systematic unified framework for both analysis and synthesis for singularly perturbed systems. It paves the way for the gap between frequency-domain-transfer-function-based results and time-domain-state-space-based results to be bridged. It is divided into three parts focusing on: fundamental background of singular perturbation; general singular perturbation methodologies and time-scale techniques and the theoretical foundation of finite-frequency control; the analysis and synthesis of singularly perturbed systems; and real-world engineering applications implementing the results developed in systems like wind turbines and autonomous-aerial-vehicle hovering. It also presents solutions to analysis and design problems in terms of linear matrix inequalities. Lastly, it provides valuable reference material for researchers who wish to explore the design of controllers for such systems.




Handbook of Neurobehavioral Genetics and Phenotyping


Book Description

The Handbook of Behavioral Genetics and Phenotyping represents an integrative approach to neurobehavioural genetics; worldwide experts in their field will review all chapters. Advanced overviews of neurobehavioural characteristics will add immense value to the investigation of animal mutants and provide unique information about the genetics and behavioural understanding of animal models, under both normal and pathological conditions. Cross-species comparisons of neurobehavioural phenotypes will pave the way for an evolutionary understanding of behaviour. Moreover, while biological sciences are progressing towards a holistic approach to investigate the complexity of organisms (i.e., “systems biology” approach), an integrated analysis of behavioural phenotyping is still lacking. The Handbook of Behavioral Genetics and Phenotyping strengthens the cross-talk within disciplines that investigate the fundamental basis of behaviour and genetics. This will be the first volume in which traditionally distant fields including genomics, behaviour, electrophysiology, neuroeconomics, and computational neuroscience, among others, are evaluated together and simultaneously accounted for during discussions of future perspectives.