3D Flash Memories


Book Description

This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.




Electromigration Inside Logic Cells


Book Description

This book describes new and effective methodologies for modeling, analyzing and mitigating cell-internal signal electromigration in nanoCMOS, with significant circuit lifetime improvements and no impact on performance, area and power. The authors are the first to analyze and propose a solution for the electromigration effects inside logic cells of a circuit. They show in this book that an interconnect inside a cell can fail reducing considerably the circuit lifetime and they demonstrate a methodology to optimize the lifetime of circuits, by placing the output, Vdd and Vss pin of the cells in the less critical regions, where the electromigration effects are reduced. Readers will be enabled to apply this methodology only for the critical cells in the circuit, avoiding impact in the circuit delay, area and performance, thus increasing the lifetime of the circuit without loss in other characteristics.




Nano Devices and Sensors


Book Description

The chapters in this edited book are written by some authors who have presented very high quality papers at the 2015 International Symposium of Next-Generation Electronics (ISNE 2015) held in Taipei, Taiwan. The ISNE 2015 was intended to provide a common forum for researchers, scientists, engineers, and practitioners throughout the world to present their latest research findings, ideas, developments, and applications in the general areas of electron devices, integrated circuits, and microelectronic systems and technologies. The scope of the conference includes the following topics: A. Green Electronics B. Microelectronic Circuits and Systems C. Integrated Circuits and Packaging Technologies D. Computer and Communication Engineering E. Electron Devices F. Optoelectronic and Semiconductor Technologies The technical program consisted of 4 plenary talks, 23 invited talks, and more than 250 contributed oral and poster presentations. Plenary speakers were recognized experts in their fields, and their talks focused on leading-edge technologies including: "The Future Lithographic Technology for Semiconductor Fabrication" by Dr. Alek C. Chen, Asia ASML, Taiwan. "Detection of Single Traps and Characterization of Individual Traps: Beginning of Atomistic Reliability Physics" by Prof. Toshiaki Tsuchiya, Shimane University, Japan. "The Art and Science of Packaging High-Coupling Photonics Devices and Modules", by Prof. Wood-Hi Cheng, National Chung-Hsing University, Taiwan. "Prospect and Outlook of Electrostatic Discharge (ESD) Protection in Emerging Technologies", by Prof. Juin J. Liou, University of Central Florida, USA. After a rigorous review process, the ISNE 2015 technical program committee has selected 10 outstanding presentations and invited the authors to prepare extended chapters for inclusion in this edited book. Of the 10 chapters, five are focused on the subject of electronic devices, and the other covers the circuit designs for various applications. The authors are working at the academia in Austria, United States, Korea, and Taiwan. The guest editors would like to take this opportunity to express our sincere gratitude to all the members of the ISNE 2015 technical program committees for reviewing the papers and selecting the manuscripts for the edited book. We also thank all the authors for their valuable and excellent contributions to the book.




Nanoelectronics


Book Description

Offering first-hand insights by top scientists and industry experts at the forefront of R&D into nanoelectronics, this book neatly links the underlying technological principles with present and future applications. A brief introduction is followed by an overview of present and emerging logic devices, memories and power technologies. Specific chapters are dedicated to the enabling factors, such as new materials, characterization techniques, smart manufacturing and advanced circuit design. The second part of the book provides detailed coverage of the current state and showcases real future applications in a wide range of fields: safety, transport, medicine, environment, manufacturing, and social life, including an analysis of emerging trends in the internet of things and cyber-physical systems. A survey of main economic factors and trends concludes the book. Highlighting the importance of nanoelectronics in the core fields of communication and information technology, this is essential reading for materials scientists, electronics and electrical engineers, as well as those working in the semiconductor and sensor industries.




Advanced Memory Technology


Book Description

Advanced memory technologies are impacting the information era, representing a vibrant research area of huge interest in the electronics industry. The demand for data storage, computing performance and energy efficiency is increasing exponentially and will exceed the capabilities of current information technologies. Alternatives to traditional silicon technology and novel memory principles are expected to meet the need of modern data-intensive applications such as “big data” and artificial intelligence (AI). Functional materials or methodologies may find a key role in building novel, high speed and low power consumption computing and data storage systems. This book covers functional materials and devices in the data storage areas, alongside electronic devices with new possibilities for future computing, from neuromorphic next generation AI to in-memory computing. Summarizing different memory materials and devices to emphasize the future applications, graduate students and researchers can systematically learn and understand the design, materials characteristics, device operation principles, specialized device applications and mechanisms of the latest reported memory materials and devices.







Design Rules in a Semiconductor Foundry


Book Description

Nowadays over 50% of integrated circuits are fabricated at wafer foundries. This book presents a foundry-integrated perspective of the field and is a comprehensive and up-to-date manual designed to serve process, device, layout, and design engineers. It comprises chapters carefully selected to cover topics relevant for them to deal with their work. The book provides an insight into the different types of design rules (DRs) and considerations for setting new DRs. It discusses isolation, gate patterning, S/D contacts, metal lines, MOL, air gaps, and so on. It explains in detail the layout rules needed to support advanced planarization processes, different types of dummies, and related utilities as well as presents a large set of guidelines and layout-aware modeling for RF CMOS and analog modules. It also discusses the layout DRs for different mobility enhancement techniques and their related modeling, listing many of the dedicated rules for static random-access memory (SRAM), embedded polyfuse (ePF), and LogicNVM. The book also provides the setting and calibration of the process parameters set and describes the 28~20 nm planar MOSFET process flow for low-power and high-performance mobile applications in a step-by-step manner. It includes FEOL and BEOL physical and environmental tests for qualifications together with automotive qualification and design for automotive (DfA). Written for the professionals, the book belongs to the bookshelf of microelectronic discipline experts.




Metal Oxide-Based Thin Film Structures


Book Description

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike




Microwave Systems and Applications


Book Description

Microwave systems are key components of every modern wireless communication system. The main objective of this book was to collect as many different state-of-the-art studies as possible in order to cover in a single volume the main aspects of microwave systems and applications. This book contains 17 chapters written by acknowledged experts, researchers, academics, and microwave engineers, providing comprehensive information and covering a wide range of topics on all aspects of microwave systems and applications. This book is divided into four parts. The first part is devoted to microwave components. The second part deals with microwave ICs and innovative techniques for on-chip antenna design. The third part presents antenna design cases for microwave systems. Finally, the last part covers different applications of microwave systems.